在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電子發燒友網>今日頭條>IGBT 和 GaN、SiC 和硅 FET 的統一視圖和價格-性能分析

IGBT 和 GaN、SiC 和硅 FET 的統一視圖和價格-性能分析

收藏

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴

評論

查看更多

相關推薦

48V電源系統中的GaN FET應用

解決方案需要額外的 IC,這會增加額外的復雜性和挑戰。在本文中,作者介紹了一種與 GaN FET 兼容的模擬控制器,該控制器的材料清單數量很少,讓設計人員能夠以與使用硅 FET 相同的簡單方式設計同步降壓轉換器,并提供卓越的性能
2022-07-26 11:57:091274

具有SiCGaN的高功率

電力電子將在未來幾年發展,尤其是對于組件,因為 WBG 半導體技術正變得越來越流行。高工作溫度、電壓和開關頻率需要 GaNSiC 等 WBG 材料的能力。從硅到 SiCGaN 組件的過渡標志著功率器件發展和更好地利用電力的重要一步。
2022-07-27 10:48:41761

UnitedSiC推出業界最佳6mΩ SiC FET

UnitedSiC的第4代SiC FET采用了“共源共柵”拓撲結構,其內部集成了一個SiC JFET并將之與一個硅MOSFET封裝在一起。
2021-09-14 14:47:19612

GaNSiC 器件相似和差異

GaNSiC 器件在某些方面相似,但有顯著差異。
2021-11-17 09:06:184236

同是功率器件,為什么SiC主要是MOSFET,GaN卻是HEMT

遷移率晶體管)。為什么同是第三代半導體材料,SiCGaN在功率器件上走了不同的道路?為什么沒有GaN MOSFET產品?下面我們來簡單分析一下。 ? GaNSiC 功率器件的襯底材料區別 ? 首先我們從襯底材料來看看SiCGaN功率器件的區別,一般而言,SiC功率器件是在
2023-12-27 09:11:361219

GaN FET如何實現下代工業電源設計

對比GaN FET:新的集成系統大型數據中心、企業服務器和通信交換中心會消耗大量電能。在這些電源系統中,FET通常與柵極驅動器分開封裝,因為它們使用不同的工藝技術,并且最終會產生額外的寄生電感。除了導致較大的形狀尺寸外,這還可能限制GaN在高壓擺率下的開關性能
2022-11-07 06:26:02

GaN FET重新定義電源電路設計

MOSFET功率晶體管多年來直是電源設計的支柱。雖然它們仍然被廣泛使用,但是在些新設計中,氮化鎵(GaN)晶體管正在逐漸替代MOSFET。GaN技術的最新發展,以及改進的GaN器件和驅動器電路
2017-05-03 10:41:53

GaNMOSFET提供的主要優點和優勢

,幾代MOSFET晶體管使電源設計人員實現了雙極性早期產品不可能實現的性能和密度級別。然而,近年來,這些已取得的進步開始逐漸弱化,為下個突破性技術創造了空間和需求。這就是氮化鎵(GaN)引人注目
2022-11-14 07:01:09

GaN功率IC實現了安徽世界上最小的大時代筆電電源適配器怎么樣

SiC(碳化硅)、GaN(氮化鎵),采用材料可以使得芯片體積小、重量輕、成本低,而SiC僅可以提高效率節省能源,兩者不能兼得,事實證明只有通過GaN功率IC才可以做到無與倫比的速率和效率。另外
2017-09-25 10:44:14

GaNSiC區別

柵極電荷,它可以使用高開關頻率,從而允許使用較小的電感器和電容器。 相較于SiC的發展,GaN功率元件是個后進者,它是種擁有類似于SiC性能優勢的寬能隙材料,但擁有更大的成本控制潛力,尤其是高功率的
2022-08-12 09:42:07

GaN是如何轉換射頻能量及其在烹飪中的應用【6】

頻帶范圍,使得射頻能量在工作時不會對持有許可證的通信網絡產生干擾。 GaN器件的技術優勢現在已經有了頗具競爭性的價格水平,這無疑將成為射頻功率應用中的個分支技術。特別是在工業應用領域,當前正在
2017-05-01 15:47:21

GaN晶體管與其驅動器的封裝集成實現高性能

的開關速度比MOSFET快很多,從而有可能實現更低的開關損耗。然而,當壓擺率很高時,特定的封裝類型會限制GaN FET的開關性能。將GaN FET與驅動器集成在個封裝內可以減少寄生電感,并且優化
2018-08-30 15:28:30

SiC GaN有什么功能?

基于碳化硅(SiC)、氮化鎵(GaN)等寬帶隙(WBG)半導體的新型高效率、超快速功率轉換器已經開始在各種創新市場和應用領域攻城略地——這類應用包括太陽能光伏逆變器、能源存儲、車輛電氣化(如充電器
2019-07-31 06:16:52

SiC MOSFET的器件演變與技術優勢

MOSFET ,是許多應用的優雅解決方案。然而,SiC功率器件的圣杯直是MOSFET,因為它與IGBT的控制相似 - 但具有前述的性能和系統優勢。  SiC MOSFET的演變  SiC MOSFET存在
2023-02-27 13:48:12

SiC/GaN具有什么優勢?

基于SiC/GaN的新代高密度功率轉換器SiC/GaN具有的優勢
2021-03-10 08:26:03

SiC/GaN功率開關有什么優勢

新型和未來的 SiC/GaN 功率開關將會給方方面面帶來巨大進步,從新代再生電力的大幅增加到電動汽車市場的迅速增長。其巨大的優勢——更高功率密度、更高工作頻率、更高電壓和更高效率,將有助于實現更緊
2018-10-30 11:48:08

SiC/GaN功率轉換器已在各種創新市場和應用領域攻城略地

)和由此實現的高功率密度。[color=rgb(51, 51, 51) !important]SiC-/GaN功率實現多級功率轉換級和全雙向工作模式,IGBT則因逆變工作模式而受到些限制。[color
2019-07-16 23:57:01

SiC功率器件SiC-MOSFET的特點

使用IGBT和Si-MOSFET使用的驅動電壓VGS=10~15V不能發揮出SiC本來的低導通電阻的性能,所以為了得到充分的低導通電阻,推薦使用VGS=18V左右進行驅動。
2019-05-07 06:21:55

SiC器件與器件相比有哪些優越的性能

相比,SiC有哪些優勢?SiC器件與器件相比有哪些優越的性能?碳化硅器件的缺點有哪些?
2021-07-12 08:07:35

文詳解下代功率器件寬禁帶技術

SiCGaN需要高3倍的能量才能使電子開始在材料中自由移動。因而具有比更佳的特性和性能個主要優勢是大大減少開關損耗。首先,這意味著器件運行更不易發熱。這有益于整個系統,因為可減少散熱器的大小
2020-10-27 09:33:16

CGHV96100F2氮化鎵(GaN)高電子遷移率晶體管

`Cree的CGHV96100F2是氮化鎵(GaN)高電子遷移率晶體管(HEMT)在碳化硅(SiC)基板上。 該GaN內部匹配(IM)FET與其他技術相比,具有出色的功率附加效率。 氮化鎵與或砷化
2020-12-03 11:49:15

TI助力GaN技術的推廣應用

,并且優化其性能。我們深知,TI必須另辟蹊徑。通過將GaN FET與高性能驅動器進行共同封裝,我們能夠在個模塊內提供驚人的性能。 TI也力求使GaN器件更加的智能化。我們直在努力讓器件更加智能,以降
2018-09-10 15:02:53

【羅姆SiC-MOSFET 試用體驗連載】SiC MOSFET元器件性能研究

項目名稱:SiC MOSFET元器件性能研究試用計劃:申請理由本人在半導體失效分析領域有多年工作經驗,熟悉MOSET各種性能和應用,掌握各種MOSFET的應用和失效分析方法,熟悉MOSFET的主要
2020-04-24 18:09:12

為什么GaN會在射頻應用中脫穎而出?

方形,通過兩個晶格常數(圖中標記為a 和c)來表征。GaN 晶體結構在半導體領域,GaN 通常是高溫下(約為1,100°C)在異質基板(射頻應用中為碳化硅[SiC],電源電子應用中為[Si])上通過
2019-08-01 07:24:28

為何使用 SiC MOSFET

要充分認識 SiC MOSFET 的功能,種有用的方法就是將它們與同等的器件進行比較。SiC 器件可以阻斷的電壓是器件的 10 倍,具有更高的電流密度,能夠以 10 倍的更快速度在導通和關斷
2017-12-18 13:58:36

什么是基于SiCGaN的功率半導體器件?

元件來適應略微增加的開關頻率,但由于無功能量循環而增加傳導損耗[2]。因此,開關模式電源直是向更高效率和高功率密度設計演進的關鍵驅動力。  基于 SiCGaN 的功率半導體器件  碳化硅
2023-02-21 16:01:16

傳統的組件、碳化硅(Sic)和氮化鎵(GaN)

傳統的組件、碳化硅(Sic)和氮化鎵(GaN)伴隨著第三代半導體電力電子器件的誕生,以碳化硅(Sic)和氮化鎵(GaN)為代表的新型半導體材料走入了我們的視野。SiCGaN電力電子器件由于本身
2021-09-23 15:02:11

SiC功率模塊介紹

SiC功率模塊”量產。與以往的Si-IGBT功率模塊相比,“全SiC”功率模塊可高速開關并可大幅降低損耗。關于這點,根據這之前介紹過的SiC-SBD和SiC-MOSFET的特點與性能,可以很容易理解
2018-11-27 16:38:04

SiC功率模塊的開關損耗

所增加,但其增加比例遠低于IGBT模塊。可以看出結論是:在30kHz條件下,總體損耗可降低約60%。這是前面提到的第二個優勢。可見這正如想象的樣,開關損耗小是由組成全SiC模塊的SiC元件特性所帶來的。關于
2018-11-27 16:37:30

具有GaN的汽車降壓/反向升壓轉換器是如何實現高效48V配電的?

,并在下方放置個實心接地層。為此應用選擇的微控制器具有高分辨率PWM模塊,可精確控制占空比和0.25 ns的死區時間,從而優化這些模塊以充分利用GaN FET性能。  降壓和升壓模式均實現數字平均
2023-02-21 15:57:35

內置SiC SBD的Hybrid IGBT 在FRD+IGBT的車載充電器案例中 開關損耗降低67%

內置SiC肖特基勢壘二極管的IGBT:RGWxx65C系列內置SiC SBD的Hybrid IGBT在FRD+IGBT的車載充電器案例中開關損耗降低67%關鍵詞* ? SiC肖特基勢壘二極管(SiC
2022-07-27 10:27:04

可控是什么?是IGBT嗎?

`可控是指可控什么呢?控制電流還是電壓?IGBT是可控嗎?可控般橋式整流器有什么區別?`
2011-08-13 17:08:12

GaN解決方案門戶上查看TI完整的GaN直流/直流轉換產品組合

,實現了更高的開關頻率,減少甚至去除了散熱器。圖2顯示了GaNFET之間48V至POL的效率比較。 圖 2:不同負載電流下GaN直流/直流轉換器的48V至POL效率 TI的新型48V至POL
2019-07-29 04:45:02

基于GaN HEMT的半橋LLC優化設計和損耗分析

目前傳統半導體器件的性能已逐漸接近其理論極限, 即使采用最新的器件和軟開關拓撲,效率在開關頻率超過 250 kHz 時也會受到影響。 而增強型氮化鎵晶體管 GaN HEMT(gallium
2023-09-18 07:27:50

基于低功耗SiC二極管的最高功率密度實現方案

相較于,碳化硅(SiC)肖特基二極管采用全新的技術,提供更出色的開關性能和更高的可靠性。SiC無反向恢復電流,且具有不受溫度影響的開關特性和出色的散熱性能,因此被視為下代功率半導體。
2019-07-25 07:51:59

如何利用C2000實時MCU提高GaN數字電源設計實用性

與碳化硅 (SiC)FETFET 相比,氮化鎵 (GaN) 場效應晶體管 (FET) 可顯著降低開關損耗和提高功率密度。這些特性對于數字電源轉換器等高開關頻率應用大有裨益,可幫助減小磁性元件
2022-11-04 06:18:50

如何用碳化硅(SiC)MOSFET設計個高性能門極驅動電路

對于高壓開關電源應用,碳化硅或SiC MOSFET帶來比傳統MOSFET和IGBT明顯的優勢。在這里我們看看在設計高性能門極驅動電路時使用SiC MOSFET的好處。
2018-08-27 13:47:31

如何用集成驅動器優化氮化鎵性能

導讀:將GaN FET與它們的驅動器集成在起可以改進開關性能,并且能夠簡化基于GaN的功率級設計。氮化鎵 (GaN) 晶體管的開關速度比MOSFET快很多,從而有可能實現更低的開關損耗。然而,當
2022-11-16 06:23:29

實時功率GaN波形監視的必要性討論

夠提供比傳統占板面積封裝高50%的電流。這使得設計人員能夠靈活地使用更高電流,而又無需增加終端設備尺寸。與FET相比,GaN FET個巨大優勢就是可以實現的極短開關時間。此外,減少的電容值和可以
2019-07-12 12:56:17

報名 | 寬禁帶半導體(SiCGaN)電力電子技術應用交流會

`由電氣觀察主辦的“寬禁帶半導體(SiCGaN)電力電子技術應用交流會”將于7月16日在浙江大學玉泉校區舉辦。寬禁帶半導體電力電子技術的應用、寬禁帶半導體電力電子器件的封裝、寬禁帶電力電子技術
2017-07-11 14:06:55

新型功率開關技術和隔離式柵極驅動器不斷變化的格局

Maurice Moroney 市場經理 ADI公司基于碳化硅(SiC)和氮化鎵(GaN)等材料的新型功率開關技術的出現促使性能大幅提升,超越了基于MOSFET和IGBT技術的傳統系統。更高的開關
2018-10-16 21:19:44

新型功率開關技術和隔離式柵極驅動器不斷變化的格局

Maurice Moroney市場經理 ADI公司基于碳化硅(SiC)和氮化鎵(GaN)等材料的新型功率開關技術的出現促使性能大幅提升,超越了基于MOSFET和IGBT技術的傳統系統。更高的開關頻率
2018-10-16 06:20:46

新型功率開關技術和隔離式柵極驅動器的趨勢和格局

Maurice Moroney市場經理ADI公司基于碳化硅(SiC)和氮化鎵(GaN)等材料的新型功率開關技術的出現促使性能大幅提升,超越了基于MOSFET和IGBT技術的傳統系統。更高的開關頻率將
2018-10-24 09:47:32

柵極驅動器隔離柵的耐受性能怎么樣?

在高度可靠、高性能的應用中,如電動/混合動力汽車,隔離柵級驅動器需要確保隔離柵在所有情況下完好無損。隨著Si-MOSFET/IGBT不斷改進,以及對GaNSiC工藝技術的引進,現代功率轉換器/逆變器的功率密度不斷提高。
2019-08-09 07:03:09

氮化鎵GaN技術助力電源管理革新

、開關速度和可靠性都在不斷提高。這些器件已成功解決低電壓(低于100伏)或高電壓容差(IGBT和超結器件)中的效率和開關頻率問題。然而,由于的限制,因此無法在單個功率FET中提供所有這些功能。寬帶隙
2018-11-20 10:56:25

氮化鎵功率晶體管與Si SJMOS和SiC MOS晶體管對分分析哪個好?

的選擇和比較進行了分析。考慮了晶體管參數,如與時間相關的輸出有效電容(Co(tr))和關斷能量(Eoff)等,這會影響LLC轉換器的高性能成就。還分析了基于GaN、Si和SiC MOS的3KW 48V
2023-02-27 09:37:29

淺析SiC-MOSFET

應用看,未來非常廣泛且前景被看好。與圈內某知名公司了解到,旦國內品牌誰先成功掌握這種技術,那它就會呈暴發式的增加。在Si材料已經接近理論性能極限的今天,SiC功率器件因其高耐壓、低損耗、高效率等特性
2019-09-17 09:05:05

用于大功率和頻率應用的舍入 GaN 基晶體管

和高頻場效應晶體管(FET)。WBG 材料以其優異的電學特性,如 GaN 和碳化硅(SiC) ,克服了基高頻電子器件的局限性。更重要的是,WBG 半導體可用于可擴展的汽車電氣系統和電動汽車(電動汽車
2022-06-15 11:43:25

碳化硅SiC技術導入應用的最大痛點

IGBT樣易于驅動。事實上,其TO-247封裝可以替代許多這類器件,實現即時的性能提升。對于新的設計,還有種低電感、熱增強型DFN8x8封裝,充分利用了SiC-FET的高頻性能。  SiC-FET
2023-02-27 14:28:47

第三代半導體材料盛行,GaNSiC如何撬動新型功率器件

(SiC)、氮鎵(GaN)為代表的寬禁帶功率管過渡。SiCGaN材料,由于具有寬帶隙、高飽和漂移速度、高臨界擊穿電場等突出優點,與剛石等半導體材料起,被譽為是繼第代Ge、Si半導體材料、第二代GaAs
2017-06-16 10:37:22

請問SiCGaN具有的優勢主要有哪些

請問SiCGaN具有的優勢主要有哪些?
2021-08-03 07:34:15

適用于5G毫米波頻段等應用的新興SiCGaN半導體技術

  本文介紹了適用于5G毫米波頻段等應用的新興SiCGaN半導體技術。通過兩個例子展示了采用這種GaN工藝設計的MMIC的性能:Ka頻段(29.5至36GHz)10W的PA和面向5G應用的24至
2020-12-21 07:09:34

適用于UPS和逆變器的碳化硅FETIGBT柵極驅動器參考設計

描述此款碳化硅 (SiC) FETIGBT 柵極驅動器參考設計為驅動 UPS、交流逆變器和電動汽車充電樁(電動汽車充電站)應用的功率級提供了藍圖。此設計基于 TI 的 UCC53xx
2018-09-30 09:23:41

驅動新SiC/GaN功率轉換器的IC生態系統

Stefano GallinaroADI公司各種應用的功率轉換器正從純IGBT轉向SiC/GaN MOSFET。些市場(比如電機驅動逆變器市場)采用新技術的速度較慢,而另些市場(比如太陽能
2018-10-22 17:01:41

PEC-電力電子帶你看SiCGaN技術與發展展望

據權威媒體分析SiCGaN器件將大舉進入電力電子市場,預計到2020年,SiCGaN功率器件將分別獲得14%和8%市場份額。未來電力電子元器件市場發展將更多地集中到SiCGaN的技術創新上。
2013-09-18 10:13:112463

高功率SiC MESFET和GaN HEMT晶體管的熱性能指南

這篇文章的目的是提供一個指南,高功率SiC MESFET和GaN HEMT晶體管的熱性能的克里寬禁帶半導體設備的用戶。
2017-06-27 08:54:1123

GaNSiC器件或將成為功率轉換應用中的新型解決方案

基于碳化硅(SiC)和氮化鎵(GaN)等材料的新型功率開關技術的出現促使性能大幅提升,超越了基于MOSFET和IGBT技術的傳統系統。
2018-10-04 09:03:004753

GaNSiC器件將成為功率轉換應用中的新型解決方案

基于碳化硅(SiC)和氮化鎵(GaN)等材料的新型功率開關技術的出現促使性能大幅提升,超越了基于MOSFET和IGBT技術的傳統系統。
2019-01-05 09:01:093767

采用GaNSiC技術的新一代半橋逆變器的性能分析

新一代逆變器採用GaNSiC等先進開關技術。寬帶隙功率開關,具有更出色的功效、更高的功率密度、更小巧的外形和更輕的重量,通過提高開關頻率來實現。
2019-07-25 06:05:001892

最新SiC器件與Si IGBT性能比較

直到最近,功率模塊市場仍被硅(Si)絕緣柵雙極型晶體管(IGBT)把持。需求的轉移和對更高性能的關注,使得這些傳統模塊不太適合大功率應用,這就帶來了 SiC 基功率器件的應運而生。
2019-11-08 11:41:5317036

SiC IGBT在電力電子變壓器的發展

SiC SBD和 MOS是目前最為常見的 SiC 基的器件,并且 SiC MOS 正在一些領域和 IGBT爭搶份額。我們都知道,IGBT 結合了 MOS 和 BJT 的優點,第三代寬禁帶半導體SiC
2020-03-20 15:56:284190

半導體材料:Si、SiCGaN

作為半導體材料“霸主“的Si,其性能似乎已經發展到了一個極限,而此時以SiCGaN為主的寬禁帶半導體經過一段時間的積累也正在變得很普及。所以,出現了以Si基器件為主導,SiCGaN為"游擊"形式存在的局面。
2020-08-27 16:26:0010156

GaN技術可突破硅基IGBTSiC等現有技術的諸多局限

GaN技術突破了硅基IGBTSiC等現有技術的諸多局限,可為各種功率轉換應用帶來直接和間接的性能效益。在電動車領域,GaN技術可直接降低功率損耗,從而為汽車實現更長的行駛里程。同時,更高效的功率
2020-09-18 16:19:172638

SiC IGBT的發展現狀及未來趨勢分析

SiC IGBT的發展至少也有30年了,大眾視野中很少會提及到SiC IGBT產品,并不是沒有,只是太多事情是我們目不可及的。就目前而言,SiC器件的制成還有著很多難點需要突破和解決,下面我們就來看看SiC IGBT的現狀和挑戰。
2020-10-30 14:13:295849

ACPL-P349/W349評估板特性 IGBTSiC/GaN MOSFET柵極驅動器配置分析

本手冊概述了 ACPL-P349/W349 評估板的特性以及評估隔離式 IGBTSiC/GaN MOSFET 柵極驅動器所需的配置。需要目視檢查以確保收到的評估板處于良好狀態。
2021-06-23 10:45:213354

UnitedSiC SiC FET用戶手冊

UnitedSiC SiC FET用戶手冊
2021-09-07 18:00:1317

GaN電源系統性能升級的奧秘

如今,以GaNSiC為代表的第三代半導體技術風頭正勁。與傳統的半導體材料相比,GaNSiC禁帶寬度大、擊穿電場強度高、電子遷移率高、熱導電率大、介電常數小、抗輻射能力強……因此可實現更高
2022-02-25 10:12:551999

適用于CSP GaN FET的簡單且高性能的熱管理解決方案?

本文將展示芯片級封裝 (CSP) GaN FET 如何提供至少與硅 MOSFET 相同(如果不優于)的熱性能。由于其卓越的電氣性能GaN FET 的尺寸可以減小,從而在尊重溫度限制的同時提高功率密度。這種行為將通過 PCB 布局的詳細 3D 有限元模擬來展示,同時還提供實驗驗證以支持分析
2022-07-25 09:15:05488

適用于CSP GaN FET的簡單且高性能的熱管理解決方案?

本文將展示芯片級封裝 (CSP) GaN FET 如何提供至少與硅 MOSFET 相同(如果不優于)的熱性能。由于其卓越的電氣性能GaN FET 的尺寸可以減小,從而在尊重溫度限制的同時提高功率密度。這種行為將通過 PCB 布局的詳細 3D 有限元模擬來展示,同時還提供實驗驗證以支持分析
2022-07-29 08:06:37394

UnitedSiC 750V第4代SiC FET性能解析

UnitedSiC(現為Qorvo)擴展了其突破性的第4代 SiC FET產品組合, 通過采用TO-247-4引腳封裝的750V/6mOhm SiC FET和采用D2PAK-7L表面貼裝封裝
2022-08-01 12:14:081068

48V電源系統中的GaN FET應用

解決方案需要額外的 IC,這會增加額外的復雜性和挑戰。在本文中,作者介紹了一種兼容 GaN FET 的模擬控制器,該控制器的物料清單數量少,使設計人員能夠像使用硅 FET 一樣簡單地設計同步降壓轉換器,并提供卓越的性能。 眾所周知,與傳統的硅 FET 相比,氮化鎵 (GaN) FET 已顯
2022-08-04 09:58:08570

第4代SiC FET的突破性性能

幾十年來,基于硅的半導體開關一直主導著功率轉換領域,IGBT 和 Si MOSFET 提供了成熟、穩健的解決方案。然而,當寬帶隙 (WBG) 器件于 2008 年開始商用,采用碳化硅 (SiC
2022-08-05 08:05:00962

SiC FET器件的特征

寬帶隙半導體是高效功率轉換的助力。有多種器件可供人們選用,包括混合了硅和SiC技術的SiC FET。本文探討了這種器件的特征,并將它與其他方法進行了對比。
2022-10-31 09:03:23666

SiC FET性能和優勢及起源和發展介紹

高頻開關等寬帶隙半導體是實現更高功率轉換效率的助力。SiC FET就是一個例子,它由一個SiC JFET和一個硅MOSFET以共源共柵方式構成。本文追溯了SiC FET的起源和發展,直至最新一代產品,并將其性能與替代技術進行了比較。
2022-11-11 09:11:55857

SiC FET的起源和發展

高頻開關等寬帶隙半導體是實現更高功率轉換效率的助力。SiC FET就是一個例子,它由一個SiC JFET和一個硅MOSFET以共源共柵方式構成。
2022-11-11 09:13:27787

OBC 充電器中的 SiC FET

OBC 充電器中的 SiC FET
2022-12-28 09:51:07565

充分挖掘 SiC FET性能

在電源轉換這一語境下,性能主要歸結為兩個互為相關的值:效率和成本。仿真結果和應用實例表明,SiC FET 可以顯著提升電源轉換器的性能。了解更多。 這篇博客文章最初由 United Silicon
2023-02-08 11:20:01403

Gan FET:為何選擇共源共柵

在過去幾年里,GaN技術,特別是硅基GaN HEMT技術,已成為電源工程師的關注重點。該技術承諾提供許多應用所需的大功率高性能和高頻開關能力。然而,隨著商用GaN FET變得更容易獲得,一個關鍵問題仍然存在。為何選擇共源共柵?
2023-02-09 09:34:12419

在半橋拓撲中并聯 Nexperia GaN FET-AN90030

在半橋拓撲中并聯 Nexperia GaN FET-AN90030
2023-02-15 19:06:190

未來的重點方向:SicIGBT

IGBT、MCU、以及SIC會是接下來新能源汽車智能化比較長期的需求點,根據特斯拉Model3的車型用量來看,單車使用IGBT是84顆,或者48顆Sic MOsfet(技術更優),MCU的供應商是意法半導體,基本可以結論,SicIGBT會是未來的重點方向。
2023-03-24 10:18:36630

IGBTSiC這兩者的存在意義

近年來,以SiCSiC)、氮化鎵(GaN)等材料為代表的化合物半導體因其寬禁帶、高飽和漂移速度、高臨界擊穿電場等優異的性能而飽受關注。
2023-03-28 10:00:302031

SiCGaN的共源共柵解決方案

GaNSiC器件比它們正在替代的硅元件性能更好、效率更高。全世界有數以億計的此類設備,其中許多每天運行數小時,因此節省的能源將是巨大的。
2023-03-29 14:21:05296

氧化鎵有望成為超越SiCGaN性能的材料

氧化鎵有望成為超越SiCGaN性能的材料,有望成為下一代功率半導體,日本和海外正在進行研究和開發。
2023-04-14 15:42:06363

碳化硅(SiC)技術取代舊的硅FETIGBT

所有類型的電動汽車(EV)的高功率、高電壓要求,包括電動公交車和其他電子交通電源系統,需要更高的碳化硅(SiC)技術來取代舊的硅FETIGBT。安全高效地驅動這些更高效的SiC器件可以使用數字而不是模擬柵極驅動器來實現,許多非汽車或非車輛應用將受益。
2023-05-06 09:38:501693

GaNSiC功率器件的特點 GaNSiC的技術挑戰

 SiCGaN被稱為“寬帶隙半導體”(WBG),因為將這些材料的電子從價帶炸毀到導帶所需的能量:而在硅的情況下,該能量為1.1eV,SiC(碳化硅)為3.3eV,GaN(氮化鎵)為3.4eV。這導致了更高的適用擊穿電壓,在某些應用中可以達到1200-1700V。
2023-08-09 10:23:39431

聯合SiCFET-Jet計算器 — — 從SIC FET選擇中得出猜算結果

聯合SiCFET-Jet計算器 — — 從SIC FET選擇中得出猜算結果
2023-09-27 15:15:17499

如何設計一種適用于SiC FET的PCB呢?

SiC FET(即 SiC JFET 和硅 MOSFET 的常閉共源共柵組合)等寬帶隙半導體開關推出后,功率轉換產品無疑受益匪淺。
2023-10-19 12:25:58208

SiCGaN 的興起與未來 .zip

SiCGaN的興起與未來
2023-01-13 09:06:226

還沒使用SiC FET?快來看看本文,秒懂SiC FET性能和優勢!

還沒使用SiC FET?快來看看本文,秒懂SiC FET性能和優勢!
2023-11-29 16:49:23277

UnitedSiC SiC FET用戶指南

UnitedSiC SiC FET用戶指南
2023-12-06 15:32:24172

充分挖掘SiC FET性能

充分挖掘SiC FET性能
2023-12-07 09:30:21152

已全部加載完成

主站蜘蛛池模板: 欧美另类高清xxxxx| www.干| 在线观看永久免费视频网站| ts人妖在线观看| 午夜国产在线| 久久久香蕉视频| 久久www成人看片| 黄色大视频| 日韩高清成人毛片不卡| 中文天堂在线最新2022更新| 一级片黄色免费| 色视频网| 久青草国产手机视频免费观看| 国产在线97色永久免费视频| 97色涩| 久久精品看片| 在线观看黄色网| 美女扒开尿口让男人捅| 午夜三级a三点| 美女又黄又免费的视频| yy6080理aa级伦大片一级| 天堂在线链接| 欧美另类69| 真实偷清晰对白在线视频| 成人精品亚洲| 亚洲午夜免费视频| 国产九九热| 欧洲不卡一卡2卡三卡4卡网站| 曰本性l交片视频视频| 色麒麟影院| 国产色婷婷精品综合在线| 天天做天天爱天天爽综合区| 高清午夜线观看免费| 日本视频一区在线观看免费| 五月六月激情| 精品国产一二三区在线影院| 日韩午夜| 国产一级特黄生活片| 天天操天天干天天做| 亚洲性夜| 亚洲va久久久噜噜噜久久男同|