本文從硬件加速的視角考察深度學習與FPGA,指出有哪些趨勢和創新使得這些技術相互匹配,并激發對FPGA如何幫助深度學習領域發展的探討。
2016-03-24 13:41:062481 相比GPU和GPP,FPGA在滿足深度學習的硬件需求上提供了具有吸引力的替代方案。憑借流水線并行計算的能力和高效的能耗,FPGA將在一般的深度學習應用中展現GPU和GPP所沒有的獨特優勢。同時,算法
2016-07-28 12:16:387349 深度學習在這十年,甚至是未來幾十年內都有可能是最熱門的話題。雖然深度學習已是廣為人知了,但它并不僅僅包含數學、建模、學習和優化。算法必須在優化后的硬件上運行,因為學習成千上萬的數據可能需要長達幾周的時間。因此,深度學習網絡亟需更快、更高效的硬件。接下來,讓我們重點來看深度學習的硬件架構。
2016-11-18 16:00:375544 英偉達在 2016 年的強勢崛起,GPGPU (GPU 通用計算)功不可沒。有許多原因使 2016 稱得上是 GPU 之年。但事實上,除了在核心領域(深度學習、VR、自動駕駛),為什么把 GPU 用于通用計算仍然很模糊。
2017-03-14 10:07:452910 目前大多數的機器學習是在處理器上完成的,大多數機器學習軟件會針對GPU進行更多的優化,甚至有人認為學習加速必須在GPU上才能完成,但事實上無論是運行機器學習的處理器還是優化的深度學習框架,都不
2018-03-14 18:29:098148 當一個人開始涉足深度學習時,擁有一塊高速GPU是一件很重要的事,因為它能幫人更高效地積累實踐經驗,而經驗是掌握專業知識的關鍵,能打開深入學習新問題的大門。如果沒有這種快速的反饋,我們從錯誤中汲取經驗的時間成本就太高了,同時,過長的時間也可能會讓人感到挫敗和沮喪。
2018-08-24 09:11:2580990 3GPP的目標是實現由2G網絡到3G網絡的平滑過渡,保證未來技術的后向兼容性,支持輕松建網及系統間的漫游和兼容性。
2019-09-20 09:10:03
一:深度學習DeepLearning實戰時間地點:1 月 15日— 1 月18 日二:深度強化學習核心技術實戰時間地點: 1 月 27 日— 1 月30 日(第一天報到 授課三天;提前環境部署 電腦
2021-01-09 17:01:54
理解,但是在其高冷的背后,卻有深遠的應用場景和未來。深度學習是實現機器學習的一種方式或一條路徑。其動機在于建立、模擬人腦進行分析學習的神經網絡,它模仿人腦的機制來解釋數據。比如其按特定的物理距離連接
2018-07-04 16:07:53
的數據可以對未來的數據進行推測與模擬,因此都是使用歷史數據建立模型,即使用已經產生的數據去訓練,然后使用該模型去擬合未來的數據。 在我們機器學習和深度學習的訓練過程中,經常會出現過擬合和欠擬合的現象。訓練一開始,模型通常會欠擬合,所以會對模型進行優化,然而等到訓練到一定程度的時候,就需要解決過擬合的問題了。
2021-01-28 06:57:47
在未來的某個時候,人們必定能夠相對自如地運用人工智能,安全地駕車出行。這個時刻何時到來我無法預見;但我相信,彼時“智能”會顯現出更“切實”的意義。與此同時,通過深度學習方法,人工智能的實際應用能夠在
2022-11-11 07:55:50
未來的某個時候,人們必定能夠相對自如地運用人工智能,安全地駕車出行。這個時刻何時到來我無法預見;但我相信,彼時“智能”會顯現出更“切實”的意義。與此同時,通過深度學習方法,人工智能的實際應用能夠在汽車
2019-03-13 06:45:03
深度學習常用模型有哪些?深度學習常用軟件工具及平臺有哪些?深度學習存在哪些問題?
2021-10-14 08:20:47
摘要與深度學習算法的進步超越硬件的進步,你如何確保算法明天是一個很好的適合現有的人工智能芯片下發展?,這些人工智能芯片大多是為今天的人工智能算法算法進化,這些人工智能芯片的許多設計都可能成為甚至在
2020-11-01 09:28:57
TensorFlow&TensorFlow-GPU:深度學習框架TensorFlow&TensorFlow-GPU的簡介、安裝、使用方法詳細攻略
2018-12-25 17:21:10
CPU優化深度學習框架和函數庫機器學***器
2021-02-22 06:01:02
具有深度學習模型的嵌入式系統應用程序帶來了巨大的好處。深度學習嵌入式系統已經改變了各個行業的企業和組織。深度學習模型可以幫助實現工業流程自動化,進行實時分析以做出決策,甚至可以預測預警。這些AI
2021-10-27 06:34:15
的合著者之一,說:“深度學習是AI中最令人興奮的領域,因為我們已經看到了深度學習帶來的巨大進步和大量應用。雖然AI 和DNN 研究傾向于使用 GPU,但我們發現應用領域和英特爾下一代FPGA 架構之間
2017-04-27 14:10:12
現場可編程門陣列 (FPGA) 解決了 GPU 在運行深度學習模型時面臨的許多問題
在過去的十年里,人工智能的再一次興起使顯卡行業受益匪淺。英偉達 (Nvidia) 和 AMD 等公司的股價也大幅
2024-03-21 15:19:45
Mali GPU 支持tensorflow或者caffe等深度學習模型嗎? 好像caffe2go和tensorflow lit可以部署到ARM,但不知道是否支持在GPU運行?我希望把訓練
2022-09-16 14:13:01
最耳熟能詳的就是TensorFlow,但再稍有了解的,會知道TensorFlow太過于底層,實現深度學習的過程復雜,但其框架是相當好的,Keras相比TensorFlow,具有簡單易用的特點,更適合深度學習
2018-06-04 22:32:12
]`labview調用高性能YOLOV5:http://t.elecfans.com/c1659.html 讓你的CPU也可以運行最新深度學習模型labview調用高性能Tensorflow+YOLOV4:http://t.elecfans.com/c1553.html 讓你的GPU也可以運行最新深度學習模型
2021-06-03 16:38:25
。由于深度學習需要使用海量數據來進行業務訓練,因此計算資源需求很大,動則幾十上百個GPU,甚至上千GPU等等;同時訓練時間也很長,每次訓練都是以天、周或甚至月年為單位。但是,開源的分布式訓練框架,在保證
2018-08-02 20:44:09
的參數空間已從百萬級上升到百億級,這對計算能力提出了新的挑戰。相比CPU,GPU更適合深度學習的神經網絡模型,可進行高度統異構計算明星規格族“GN5”。阿里云異構計算通用實例“GN5”規格族就是一款
2017-12-26 11:22:09
的未來方向提出關鍵建議,幫助解決今后深度學習所面臨的問題。2. FPGA傳統來說,在評估硬件平臺的加速時,必須考慮到靈活性和性能之間的權衡。一方面,通用處理器(GPP)可提供高度的靈活性和易用性,但性能
2018-08-13 09:33:30
都出現了重大突破。深度學習是這些領域中所最常使用的技術,也被業界大為關注。然而,深度學習模型需要極為大量的數據和計算能力,只有更好的硬件加速條件,才能滿足現有數據和模型規模繼續擴大的需求。 FPGA
2019-10-10 06:45:41
深度學習是什么意思
2020-11-11 06:58:03
頻率低于 CPU 和 GPU,除非設計實現,否則性能往往較差。與 CPU 和 GPU 相比實施成本高,FPGA 上支持深度學習的軟件較少很多DNN參數量大,很難在FPGA上簡單實現需要高數據精度
2023-02-17 16:56:59
怎么為自己的深度學習機器選擇合適的GPU配置呢?對于那些一直想進行深度學習研究的同學來說,一直是個比較糾結的問題,既要考慮到使用的場景,又要考慮到價格等各方面因素。如何選擇深度學習的組件?這真的很
2018-09-19 13:56:36
四大旗艦處理器相繼曝光,華為、蘋果、三星、高通誰才是SOC的無冕之王?
2020-06-03 14:41:27
本文由回映電子整理分享,歡迎工程老獅們參與學習與評論內容? 射頻系統中的深度學習? Deepwave Digital技術? 信號檢測和分類示例? GPU的實時DSP基準測試? 總結回映電子是一家
2022-01-05 10:00:58
現場總線、以太網、無線技術各有優劣,那么誰才會是未來的主流呢?顯然對所有生產商或機器并非只有一種技術才是“正確的”方案?生產商必須權衡各類方案帶來的價值。有沒有比采用普通方案帶來的利益更有
2019-09-29 09:49:13
Google機器智能研究機構)的研究員和工程師們開發出來,用于機器學習和深度神經網絡方面的研究,但這個系統的通用性使其也可廣泛用于其他計算領域。15年11月,谷歌開源了其用來制作AlphaGo的深度學習系統
2018-09-27 13:56:06
機器學習的未來在工業領域采用機器學習機器學習和大數據
2021-01-27 06:02:18
本帖最后由 會飛的鴨子 于 2014-4-2 16:59 編輯
選出誰才是真正的高手,誰才是大牛!吳鑒鷹單片機項目詳細解析系列(連載)之基于單片機的實戰項目社區之星-單片機達人-吳鑒鷹社區之星
2014-04-01 13:29:41
怎樣從傳統機器學習方法過渡到深度學習?
2021-10-14 06:51:23
請問一下什么是深度學習?
2021-08-30 07:35:21
誰有labview2013GPU工具包的學習資料?
2014-07-10 22:39:43
為幫助數據科學家和開發人員充分利用深度學習領域中的機遇,NVIDIA為其深度學習軟件平臺發布了三項重大更新,它們分別是NVIDIA DIGITS 4、CUDA深度神經網絡庫(cuDNN)5.1和全新的GPU推理引擎(GIE)。
NVIDIA深度學習軟件平臺推三項重大更新
2016-08-06 15:00:261806 FPGA是深度學習的未來,學習資料,感興趣的可以看看。
2016-10-26 15:29:040 項目組基于深度學習實現了視頻風格化和人像摳圖的功能,但這是在PC/服務端上跑的,現在需要移植到移動端,因此需要一個移動端的深度學習的計算框架。 同類型的庫 caffe-Android-lib 目前
2017-09-28 20:02:260 類庫,用數組向量來定義和計算數學表達式。它使得在Python環境下編寫深度學習算法變得簡單。在它基礎之上還搭建了許多類庫。Keras是一個簡潔、高度模塊化的神經網絡庫,它的設計參考了Torch,用Python語言編寫,支持調用GPU和CPU優化后的Theano運算。
2017-11-16 14:20:452873 幾個世紀以來,醫生都試圖借助更好的醫療工具來深入檢查病人的身體狀況,讓他們遠離病痛的折磨。如今,GPU及其推動的深度學習技術正在為智能醫學儀器打開一扇全新的大門。
2017-12-09 11:51:226860 NVIDIA創始人黃仁勛表示TITAN V GPU擁有210億個晶體管,基于Volta 架構設計,110 TFLOP 的深度學習運算能力是上一代的9 倍,可以說是全球最強的PC級GPU。
2017-12-15 13:38:381748 本文談了談gpu的一些重要的硬件組成,就深度學習而言,我覺得對內存的需求還是比較大的,core多也并不是能夠全部用上,但現在開源的庫實在完整,想做卷積運算有cudnn,想做卷積神經網絡caffe
2018-01-06 12:01:093486 隨著深度學習不斷取得進展,開發者們對在移動設備上的部署神經網絡的需求也與日俱增。和我們之前在桌面級GPU上做過的嘗試類似,把深度學習框架移植到移動端需要做到這兩點:夠快的inference速度和合
2018-01-18 13:38:0010463 幾乎所有深度學習的研究者都在使用GPU,但是對比深度學習硬鑒方案,ASIC、FPGA、GPU三種究竟哪款更被看好?主要是認清對深度學習硬件平臺的要求。
2018-02-02 15:21:4010203 新一代的PowerVR GPU,可為成本敏感設備的圖形與運算功能樹立新的標準。與前一代的GPU相比,SoC供應商將能以相同的芯片面積實現顯著的性能提升。 運用新款 PowerVR Series9XE和Series9XM GPU,SoC供應商與OEM廠商能把成本與功耗降至最低。
2018-04-09 07:19:003381 近年來,深度學習作為機器學習中比較火的一種方法出現在我們面前,但是和非深度學習的機器學習相比(我將深度學習歸于機器學習的領域內),還存在著幾點很大的不同,具體來說,有以下幾點.
2018-05-02 10:30:004135 與NIPS展示的研究類似,多模態圖像轉換依賴于無監督式學習和生成式對抗網絡 (GAN) 這兩項深度學習技術,賦予設備更多“想象力”,例如“想象”一條陽光普照的街道在暴風雨或冬季時的景象。
2018-04-27 11:12:594423 權值。在這里,GPU 可為深度學習帶來助益,使訓練和執行這些深度網絡成為可能(原始處理器在這方面的效率不夠高)。
2018-05-28 16:49:009597 在人工智能領域,機器學習研究與芯片行業的發展,即是一個相因相生的過程。自第一個深度網絡提出,深度學習歷經幾次寒冬,直至近年,才真正帶來一波AI應用的浪潮,這很大程度上歸功于GPU處理芯片的發展。
2018-06-22 09:55:585937 本文是推出的人工智能深度學習綜述,也是Hinton、LeCun和Bengio三位大神首次合寫同一篇文章。該綜述在深度學習領域的重要性不言而喻,可以說是所有人入門深度學習的必讀作品。
2018-07-30 16:40:378574 本深度學習是什么?了解深度學習難嗎?讓你快速了解深度學習的視頻講解本文檔視頻讓你4分鐘快速了解深度學習
深度學習的概念源于人工智能的人工神經網絡的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發現數據的分布式特征表示。
2018-08-23 14:36:1616 在很多人眼里,深度學習是一個非常神奇的技術,是人工智能的未來,是機器學習的圣杯。今天大恒圖像帶您一起揭開他神秘的面紗,了解什么才是深度學習。
2019-04-20 09:36:553105 未來的深度學習能夠在微型的、低功耗的芯片上自由地奔跑。換句話說,單片機 (MCU) ,有一天會成為深度學習最肥沃的土壤。這里面的邏輯走得有些繞,但好像還是有點道理的。
2019-06-04 17:52:001 深度學習從何而來?又該向哪去?
2019-07-08 15:50:492896 從 2016 年 AlphaGo 戰勝李世石掀起深度學習的熱潮,到如今深度學習寒冬論甚囂塵上,短短兩三年時間,深度學習被唱衰,如今在產業互聯網的高速發展下深度學習又該走向何方?未來的發展方向在何方?
2019-07-12 11:04:423417 GPU與CPU比較,GPU為什么更適合深度學習?
2019-08-26 15:32:004234 在GPU編程方面,阿里云會推出分布式多機多卡訓練框架和其他GPU上的性能優化服務,能夠大大降低客戶使用多機多卡的門檻,從而減少客戶在云上做深度學習訓練的時間。
2019-10-14 14:29:04487 近十年來,人工智能又到了一個快速發展的階段。深度學習在其發展中起到了中流砥柱的作用,盡管擁有強大的模擬預測能力,深度學習還面臨著超大計算量的問題。在硬件層面上,GPU,ASIC,FPGA都是解決龐大計算量的方案。
2019-10-22 15:26:21977 AI(人工智能)是當今科技圈的熱門話題,深度學習則是AI訓練的重要手段之一。如何學習要靠硬件和算法支撐,這方面,Intel力挺CPU,NVIDIA則力挺GPU。
2020-03-06 08:53:132644 AI(人工智能)是當今科技圈的熱門話題,深度學習則是AI訓練的重要手段之一。如何學習要靠硬件和算法支撐,這方面,Intel力挺CPU,NVIDIA則力挺GPU。
2020-03-06 10:36:043423 深度學習的最新成功是由于大量數據(大數據)的可用性增加以及圖形處理單元(GPU)的出現,顯著增加了用于訓練計算機的數據的廣度和深度,并減少了所需的時間用于訓練深度學習算法。
2020-04-02 09:20:182279 與其他機器學習技術相比,深度學習的主要優勢在于它能夠自動學習輸入數據的抽象表示。
2020-05-03 18:02:001979 事實上,今天在汽車行業,GPU的用例幾乎涵蓋了從ADAS到自動駕駛,從儀表到中控信息娛樂等等多個車載系統。而在實際大規模量產落地領域,基于深度學習的ADAS系統,是GPU的主力市場。
2020-08-22 09:48:512003 被提出來。不過,總的來說,現代深度學習可以分為三種基本的學習范式。每一種都有自己的學習方法和理念,提升了機器學習的能力,擴大了其范圍。 本文最初發布于 Towards Data Science 博客,由 InfoQ 中文站翻譯并分享。 深度學習的未來在于這三種學習模式,而且它們
2020-10-23 09:37:251976 在很多人眼里,深度學習是一個非常神奇的技術,是人工智能的未來,是機器學習的圣杯。今天致瑞圖像帶您一起揭開他神秘的面紗,了解什么才是深度學習。 當我們在網絡上搜索深度學習的時候往往還能搜到人工智能
2020-10-31 11:03:152401 當前機器學習訓練中,使用GPU提供算力已經非常普遍,對于GPU-based AI system的研究也如火如荼。在這些研究中,以提高資源利用率為主要目標的GPU共享(GPU sharing)是當下
2020-11-27 10:06:213270 早期的機器學習以搜索為基礎,主要依靠進行過一定優化的暴力方法。但是隨著機器學習逐漸成熟,它開始專注于加速技術已經很成熟的統計方法和優化問題。同時深度學習的問世更是帶來原本可能無法實現的優化方法。本文
2021-02-26 06:11:435 覺信息的理解可以被再現甚至超越。借助深度學習,作為機器學習的一部分,可以在應用實例的基礎上學習和訓練復雜的關系。 機器學習中的另一種技術是例如“超級矢量機”。與深度學習相比,必須手動定義和驗證功能。在深度學習中
2021-03-12 16:11:007762 你還在為神經網絡模型里的冗余信息煩惱嗎? 或者手上只有CPU,對一些只能用昂貴的GPU建立的深度學習模型“望眼欲穿”嗎? 最近,創業公司Neural Magic帶來了一種名叫新的稀疏化方法,可以幫你
2021-06-10 15:33:021975 深度學習是推動當前人工智能大趨勢的關鍵技術。在 MATLAB 中可以實現深度學習的數據準備、網絡設計、訓練和部署全流程開發和應用。聯合高性能 NVIDIA GPU 加快深度神經網絡訓練和推斷。
2022-02-18 13:31:441714 隨著人們對深度學習( deep learning , DL )興趣的日益濃厚,越來越多的用戶在生產環境中使用 DL 。由于 DL 需要強大的計算能力,開發人員正在利用 gpu 來完成他們的訓練和推理工作。
2022-04-27 09:54:471873 部署到嵌入式 GPU 也很受歡迎,因為它可以在部署的環境中提供快速的推理速度。GPU Coder 支持從 MATLAB 中的深度學習模型生成代碼,該模型利用來自 Intel、NVIDIA
2022-07-08 15:23:341303 三維圖形是 GPU 擁有如此大的內存和計算能力的根本原因,它與 深度神經網絡 有一個共同之處:都需要進行大量矩陣運算。
2022-08-06 15:56:02624 GPU 引領的深度學習
2023-01-04 11:17:16477 人工智能的概念在1956年就被提出,如今終于走入現實,離不開一種名為“深度學習”的技術。深度學習的運作模式,如同一場傳話游戲。給神經網絡輸入數據,對數據的特征進行描述,在神經網絡中層層傳遞,最終
2023-01-14 23:34:43588 與傳統機器學習相比,深度學習是從數據中學習,而大模型則是通過使用大量的模型來訓練數據。深度學習可以處理任何類型的數據,例如圖片、文本等等;但是這些數據很難用機器完成。大模型可以訓練更多類別、多個級別的模型,因此可以處理更廣泛的類型。另外:在使用大模型時,可能需要一個更全面或復雜的數學和數值計算的支持。
2023-02-16 11:32:371605 基于深度學習的車牌識別,其中,車輛檢測網絡直接使用YOLO偵測。而后,才是使用網絡偵測車牌與識別車牌號。
2023-02-19 10:37:23394 基于深度學習的車牌識別,其中,車輛檢測網絡直接使用YOLO偵測。而后,才是使用網絡偵測車牌與識別車牌號。
2023-02-19 11:35:571578 深度學習可以學習視覺輸入的模式,以預測組成圖像的對象類。用于圖像處理的主要深度學習架構是卷積神經網絡(CNN),或者是特定的CNN框架,如AlexNet、VGG、Inception和ResNet。計算機視覺的深度學習模型通常在專門的圖形處理單元(GPU)上訓練和執行,以減少計算時間。
2023-05-05 11:35:28720 早期的機器學習以搜索為基礎,主要依靠進行過一定優化的暴力方法。但是隨著機器學習逐漸成熟,它開始專注于加速技術已經很成熟的統計方法和優化問題。同時深度學習的問世更是帶來原本可能無法實現的優化方法。本文將介紹現代機器學習如何找到兼顧規模和速度的新方法。
2023-05-09 09:58:33540 NVIDIA的標準庫使在CUDA中建立第一個深度學習庫變得非常容易。早期的優勢加上NVIDIA強大的社區支持意味著如果使用NVIDIA GPU,則在出現問題時可以輕松得到支持。
2023-07-12 11:49:28399 深度學習算法簡介 深度學習算法是什么?深度學習算法有哪些?? 作為一種現代化、前沿化的技術,深度學習已經在很多領域得到了廣泛的應用,其能夠不斷地從數據中提取最基本的特征,從而對大量的信息進行機器學習
2023-08-17 16:02:565997 什么是深度學習算法?深度學習算法的應用 深度學習算法被認為是人工智能的核心,它是一種模仿人類大腦神經元的計算模型。深度學習是機器學習的一種變體,主要通過變換各種架構來對大量數據進行學習以及分類處理
2023-08-17 16:03:041300 深度學習框架是什么?深度學習框架有哪些?? 深度學習框架是一種軟件工具,它可以幫助開發者輕松快速地構建和訓練深度神經網絡模型。與手動編寫代碼相比,深度學習框架可以大大減少開發和調試的時間和精力,并提
2023-08-17 16:03:091585 深度學習框架和深度學習算法教程 深度學習是機器學習領域中的一個重要分支,多年來深度學習一直在各個領域的應用中發揮著極其重要的作用,成為了人工智能技術的重要組成部分。許多深度學習算法和框架提供
2023-08-17 16:11:26637 近年來,深度學習技術在語音合成領域取得了顯著的進展。基于深度學習的語音合成技術能夠生成更加自然、真實的語音,提高了用戶體驗。本文將介紹基于深度學習的語音合成技術的進展以及未來趨勢。 一、基于深度學習
2023-09-16 14:48:21490 GPU最初是為圖形渲染而設計的,但是由于其卓越的并行計算能力,它們很快被引入深度學習中。深度學習的迅速發展離不開計算機圖形處理單元(GPU)的支持,而GPU中的張量核心則被譽為深度學習的秘密武器
2023-09-26 08:29:54456 在很多人眼里,深度學習是一個非常神奇的技術,是人工智能的未來,是機器學習的圣杯。今天深視創新帶您一起揭開他神秘的面紗,了解什么才是深度學習。
2023-11-09 10:58:02421 人工智能的飛速發展,深度學習作為其重要分支,正在推動著諸多領域的創新。在這個過程中,GPU扮演著不可或缺的角色。就像超級英雄電影中的主角一樣,GPU在深度學習中擁有舉足輕重的地位。那么,GPU在深度
2023-12-06 08:27:37608
評論
查看更多