在人才管理中,相較于依賴招聘經理的人工篩選評估,AI模型,可以更好地幫助減輕對潛在雇員的偏見,增加組織用人的多樣性、包容性。
人工智能已經打亂了我們生活的各個領域——從亞馬遜和阿里巴巴等公司精心策劃的購物體驗,到YouTube和Netflix等頻道用個性化推薦來推銷其最新內容。但是,說到職場,在很多方面,人工智能還處于初級階段。尤其是當我們考慮到它開始改變人才管理的方式時,更是如此。用一個熟悉的比喻: 職場中的人工智能處于撥號模式。5G WiFi階段尚未到來,但我們毫不懷疑它會到來。
誠然,對于人工智能能做什么和不能做什么,以及如何定義它,人們有很多困惑。然而,在人才爭奪戰中,人工智能扮演著一個非常特殊的角色: 為機構提供對候選人職業行為、表現潛力更精準、有效的預測。與傳統招聘方式不同,比如員工推薦、簡歷篩選、面對面面試,人工智能可以發現人眼捕捉不到的特征。
許多人工智能系統使用真實的人作為特定角色的成功模型。這類人的集合作為訓練數據集,通常包含了被定義為“高績效”的管理者和員工。人工智能系統處理并比較各種求職者的個人資料和它根據訓練集創建的“模范”雇員。然后,它為公司提供一個概率估計,即候選人的屬性與理想員工的屬性匹配的程度。
理論上,這種方法可以更快、更有效地為合適的崗位匹配合適的人。但是,正如你可能已經意識到的,它已經成為一種希望和危險的源泉。如果訓練集是多樣的,如果無偏差的人口統計學特征用于描述其中的人,且算法是無偏的,那么這個技術確實可以比人類更好地減輕人類的偏見、擴大多樣性、社會經濟包容性。然而,如果訓練集,實際的數據,或者兩者都是偏態分布的,而且算法也沒有充分的審核,那么人工智能只會加劇招聘中的偏差和組織中的同質性問題。
為了快速提升人才管理以及充分利用人工智能的潛力,我們需要將重點從開發更具道德的人力資源系統轉移到開發更具道德的人工智能。當然,從人工智能中消除偏見并不容易。事實上,這很難。 但我們的論點是基于我們的信念,即它遠比從人類自身移除它更可行。
在識別人才或潛力方面,大多數機構還是會盡力而為。招聘人員在決定誰被淘汰之前只需要花費幾秒鐘的時間看一看簡歷。招聘經理利用所謂的“直覺”或是忽視硬數據,依靠文化契合度進行招聘——由于普遍缺乏客觀、嚴格的業績衡量標準,這一問題變得更為嚴重。另外,越來越多的公司實施的無意識的偏態的數據訓練往往被發現是無效的,有時甚至會使情況更糟。通常,訓練只關注個體的差別,而忽視了樣本量小的類別的結構化偏態。
盡管批評者認為人工智能并沒有更好,但他們常常忘記,這些系統反映了我們自己的行為。我們很快就會責怪人工智能預測白人(可能也是白人男性)經理會獲得更高的績效評級。但這個發生的原因是我們沒有對訓練數據中績效評級的偏態分布進行相應處理。因為人工智能得到的偏態的招聘決策,我們感到震驚,但生活在人類偏見主導的世界也可以很好??纯磥嗰R遜吧,批評他們的招聘算法有失偏頗的呼聲忽視了壓倒性的證據,即目前大多數組織中人力驅動的招聘情況是不可避免的更加糟糕。這相當于表達了對無人駕駛汽車死亡事件的關注超過了每年120萬人由于車輛缺陷、駕駛員注意力分散和酒駕而造成的交通死亡。
事實上,相比于影響激勵招聘者和招聘經理,人工智能系統有更好的能力可以保證準確性和公平性。人類擅長學習但不擅長忘記。使我們產生偏見的認知機制,往往也是我們在日常生活中用來生存的工具。這個世界太復雜了,我們無法一直有邏輯地、有意識地進行處理;如果我們這樣做了,我們將被信息過載所淹沒,無法做出簡單的決定,比如買一杯咖啡(畢竟,如果我們不認識咖啡師,我們為什么要信任他?)。這就是為什么更容易確保我們的數據和訓練集沒有偏見,而不是改變Sam或Sally的行為,對于一個人,我們既不能消除偏見,也不能真正何獲取影響他們決策的變量的實際輸出。從本質上講,分析人工智能算法比理解和改變人類思維更容易。
為此,在任何階段,使用人工智能進行人才管理的組織都應該從以下步驟開始。
教育候選人并獲得他們的許可。 向潛在的雇員進行詢問,向公司提供他們的個人數據,這些數據將被分析、存儲,應用于HR決策的人工智能系統。準備向他們解釋關于what、who、how、why的問題。因為依賴黑箱模型的人工智能系統是不道德的。如果一個候選人具備與成功相關的屬性,那么不僅需要理解為什么,還需要解釋因果關系。簡單來說,人工智能系統應該設計為用于預測和解釋因果關系的,而不僅是發現相關性。另外你應該保證候選人的匿名性,以保護個人數據并遵守相關法律規定。
投資于優化公平性和準確性的系統。 歷史上,組織心理學家曾指出,當候選人的評估模型為公平性而優化時,準確性會下降。例如,大量的學術研究表明,認知能力測試和工作表現一致,特別是在高復雜度的工作中。這種分布對任職人數少,尤其是社會經濟地位低的個人產生不利影響。也就是說,公司如果想提升多樣性,創造包容文化,那么在雇傭新員工的時候需要降低對認知測試的關注,這樣多元化的應聘者在招聘過程中就不會處于不利地位,這就是所謂的公平性/準確性權衡。
但是,這個權衡關系依賴的是半個世紀以前的技術,遠早于人工智能模型的出現,而人工智能模型可以用于傳統方法不同的方式對待數據。越來越多的證據表明人工智能可以通過部署動態的、個性化的打分算法,克服這個權衡關系,使其對準確性和公平性同樣敏感,可以共同實現最優。因此,人工智能的開發者沒有理由不這么做。此外,由于這些新的系統已經存在,我們應該質疑廣泛使用的傳統認知評估(對少數群體產生不利影響),在沒有偏見緩解的方式下是否應該繼續存在。
開發開源系統和第三方評審。 通過允許其他人評估這個用于分析的工具,讓公司和開發人員負起責任。一個解決方案是開源非專利,但關鍵部分的人工智能技術由公司所有。對于專有組件,公司可以利用由該領域可靠專家進行的第三方評審向公眾展示其如何減輕偏見。
遵守與傳統招聘同樣的數據收集、應用過程中的法律。人工智能系統不應使用因法律或道德原因而不被允許收集或包含在傳統招聘流程中的任何數據。不得輸入有關身體、精神或情緒狀況、基因信息以及藥物使用或濫用的私人信息。
如果組織解決了這些問題,我們相信,道德的人工智能不僅可以減少在招聘方面的偏見,而且還可以增強英才管理,使人才、努力和員工成功之間的聯系遠遠大于過去,從而大大改善組織。此外,這將有利于全球經濟。一旦我們減少偏見,我們的候選人池將不限于員工推薦和常春藤聯盟畢業生。來自更廣泛社會經濟背景的人將有更多機會獲得更好的工作——這有助于創造平衡,并開始彌補階級分歧。
然而,要實現上述目標,企業需要做出正確的投資,不僅是在尖端人工智能技術方面,而且(尤其是)在人類專業知識方面——這些人懂得如何利用這些新技術提供的優勢,同時最大限度地減少潛在的風險和缺點。 在任何領域,人工智能和人類智慧的結合都有可能產生比沒有人工智能更好的結果。道德人工智能應該被視為我們可以用來對抗自己偏見的工具之一,而不是最終的靈丹妙藥。
責任編輯:ct
評論
查看更多