在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>開(kāi)源神經(jīng)網(wǎng)絡(luò)圖片上色技術(shù)解析 解密深度學(xué)習(xí)自動(dòng)上色

開(kāi)源神經(jīng)網(wǎng)絡(luò)圖片上色技術(shù)解析 解密深度學(xué)習(xí)自動(dòng)上色

12345下一頁(yè)全文

本文導(dǎo)航

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

深度學(xué)習(xí)與圖神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)分享:CNN經(jīng)典網(wǎng)絡(luò)之-ResNet

深度學(xué)習(xí)與圖神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)分享:CNN 經(jīng)典網(wǎng)絡(luò)之-ResNet resnet 又叫深度殘差網(wǎng)絡(luò) 圖像識(shí)別準(zhǔn)確率很高,主要作者是國(guó)人哦 深度網(wǎng)絡(luò)的退化問(wèn)題 深度網(wǎng)絡(luò)難以訓(xùn)練,梯度消失,梯度爆炸
2022-10-12 09:54:42685

深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)架構(gòu)解析

感知器是所有神經(jīng)網(wǎng)絡(luò)中最基本的,也是更復(fù)雜的神經(jīng)網(wǎng)絡(luò)的基本組成部分。它只連接一個(gè)輸入神經(jīng)元和一個(gè)輸出神經(jīng)元。
2023-08-31 16:55:50671

詳解深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)的應(yīng)用

處理技術(shù)也可以通過(guò)深度學(xué)習(xí)來(lái)獲得更優(yōu)異的效果,比如去噪、超分辨率和跟蹤算法等。為了跟上時(shí)代的步伐,必須對(duì)深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)技術(shù)有所學(xué)習(xí)和研究。本文將介紹深度學(xué)習(xí)技術(shù)神經(jīng)網(wǎng)絡(luò)與卷積神經(jīng)網(wǎng)絡(luò)以及它們?cè)谙嚓P(guān)領(lǐng)域中的應(yīng)用。
2024-01-11 10:51:32596

2017全國(guó)深度學(xué)習(xí)技術(shù)應(yīng)用大會(huì)

元函數(shù)的變形。實(shí)驗(yàn)結(jié)果顯示,我們提出的網(wǎng)絡(luò)變形的神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)理念在標(biāo)準(zhǔn)數(shù)據(jù)集和典型的神經(jīng)網(wǎng)絡(luò)上都是有效的。  9、報(bào)告題目:面向自然語(yǔ)言理解和機(jī)器翻譯的深度學(xué)習(xí)  報(bào) 告 人:張 民 蘇州大學(xué)  報(bào)告
2017-03-22 17:16:00

深度學(xué)習(xí)與數(shù)據(jù)挖掘的關(guān)系

深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究。含多隱層的多層感知器就是一種深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過(guò)組合低層特征形成更加抽象的高層表示屬性類(lèi)別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示。晦澀難懂的概念,略微有些難以
2018-07-04 16:07:53

深度神經(jīng)網(wǎng)絡(luò)是什么

多層感知機(jī) 深度神經(jīng)網(wǎng)絡(luò)in collaboration with Hsu Chung Chuan, Lin Min Htoo, and Quah Jia Yong. 與許忠傳,林敏濤和華佳勇合作
2021-07-12 06:35:22

神經(jīng)網(wǎng)絡(luò)和反向傳播算法

03_深度學(xué)習(xí)入門(mén)_神經(jīng)網(wǎng)絡(luò)和反向傳播算法
2019-09-12 07:08:05

神經(jīng)網(wǎng)絡(luò)教程(李亞非)

源程序  5.3 Gaussian機(jī)  第6章自組織神經(jīng)網(wǎng)絡(luò)  6.1 競(jìng)爭(zhēng)型學(xué)習(xí)  6.2 自適應(yīng)共振理論(ART)模型  6.3 自組織特征映射(SOM)模型  6.4 CPN模型  第7章 聯(lián)想
2012-03-20 11:32:43

神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)搜索有什么優(yōu)勢(shì)?

近年來(lái),深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機(jī)器學(xué)習(xí)特征工程的時(shí)代,將人工智能的浪潮推到了歷史最高點(diǎn)。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對(duì)超參數(shù)的要求也越來(lái)越嚴(yán)格
2019-09-11 11:52:14

神經(jīng)網(wǎng)絡(luò)解決方案讓自動(dòng)駕駛成為現(xiàn)實(shí)

制造業(yè)而言,深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)開(kāi)辟了令人興奮的研究途徑。為了實(shí)現(xiàn)從諸如高速公路全程自動(dòng)駕駛儀的短時(shí)輔助模式到專(zhuān)職無(wú)人駕駛旅行的自動(dòng)駕駛,汽車(chē)制造業(yè)一直在尋求讓響應(yīng)速度更快、識(shí)別準(zhǔn)確度更高的方法,而深度
2017-12-21 17:11:34

神經(jīng)網(wǎng)絡(luò)資料

基于深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)算法
2019-05-16 17:25:05

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺(jué)實(shí)踐

解析深度學(xué)習(xí):卷積神經(jīng)網(wǎng)絡(luò)原理與視覺(jué)實(shí)踐
2020-06-14 22:21:12

CV之YOLOv3:深度學(xué)習(xí)之計(jì)算機(jī)視覺(jué)神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄

CV之YOLOv3:深度學(xué)習(xí)之計(jì)算機(jī)視覺(jué)神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄
2018-12-24 11:51:47

CV之YOLO:深度學(xué)習(xí)之計(jì)算機(jī)視覺(jué)神經(jīng)網(wǎng)絡(luò)tiny-yolo-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄

CV之YOLO:深度學(xué)習(xí)之計(jì)算機(jī)視覺(jué)神經(jīng)網(wǎng)絡(luò)tiny-yolo-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄
2018-12-24 11:50:57

ClearAi人工智能如何把模糊圖片變清晰和模糊視頻變清晰(自動(dòng)補(bǔ)幀)

效率低下,所以,網(wǎng)絡(luò)圖片成為很多人的選擇,而網(wǎng)絡(luò)圖片往往因?yàn)樘厥庖蛩叵袼仄停逦炔粔颍@時(shí)候,大家也許需要一款智能的圖像清晰化軟件來(lái)解決這個(gè)痛點(diǎn),這里我給大家推薦一款人工智能模糊視頻模糊人像模糊圖像
2021-08-07 22:34:26

ETPU-Z2全可編程神經(jīng)網(wǎng)絡(luò)開(kāi)發(fā)平臺(tái)

參考算法后,另一個(gè)重要的任務(wù),就是選擇深度學(xué)習(xí)框架。深度學(xué)習(xí)框架是一種用于神經(jīng)網(wǎng)絡(luò)算法開(kāi)發(fā)的工具,其主要作用,是根據(jù)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),以數(shù)據(jù)集中的圖片和標(biāo)注為輸入,計(jì)算得到與之對(duì)應(yīng)的權(quán)重參數(shù)。神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)+對(duì)應(yīng)
2020-05-18 17:13:24

Nanopi深度學(xué)習(xí)之路(1)深度學(xué)習(xí)框架分析

的初學(xué)者。日記目標(biāo)是構(gòu)建深度學(xué)習(xí)環(huán)境,使用的是TensorFlow后端的Keras,Keras 是一個(gè)用 Python 編寫(xiě)的高級(jí)神經(jīng)網(wǎng)絡(luò) API,它能夠以 TensorFlow, CNTK, 或者
2018-06-04 22:32:12

labview BP神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)

請(qǐng)問(wèn):我在用labview做BP神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)故障診斷,在NI官網(wǎng)找到了機(jī)器學(xué)習(xí)工具包(MLT),但是里面沒(méi)有關(guān)于這部分VI的幫助文檔,對(duì)于”BP神經(jīng)網(wǎng)絡(luò)分類(lèi)“這個(gè)范例有很多不懂的地方,比如
2017-02-22 16:08:08

matplotlib動(dòng)態(tài)演示深度學(xué)習(xí)之tensorflow將神經(jīng)網(wǎng)絡(luò)系統(tǒng)自動(dòng)學(xué)習(xí)散點(diǎn)(二次函數(shù)+noise)并優(yōu)化修正并且將輸出結(jié)果可視化

TF之NN:matplotlib動(dòng)態(tài)演示深度學(xué)習(xí)之tensorflow將神經(jīng)網(wǎng)絡(luò)系統(tǒng)自動(dòng)學(xué)習(xí)散點(diǎn)(二次函數(shù)+noise)并優(yōu)化修正并且將輸出結(jié)果可視化
2018-12-21 10:48:26

【AI學(xué)習(xí)】第3篇--人工神經(jīng)網(wǎng)絡(luò)

`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡(jiǎn)單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機(jī)器學(xué)習(xí)的步驟:訓(xùn)練與預(yù)測(cè)、訓(xùn)練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達(dá)訓(xùn)練流程以及AI普及化教育之路。`
2020-11-05 17:48:39

【PYNQ-Z2申請(qǐng)】基于PYNQ-Z2的神經(jīng)網(wǎng)絡(luò)圖形識(shí)別

項(xiàng)目名稱(chēng):基于PYNQ-Z2的神經(jīng)網(wǎng)絡(luò)圖形識(shí)別試用計(jì)劃:申請(qǐng)理由:本人為一名嵌入式軟件工程師,對(duì)FPGA有一段時(shí)間的接觸,基于FPGA設(shè)計(jì)過(guò)簡(jiǎn)單的ASCI數(shù)字芯片。目前正好在學(xué)習(xí)基于python
2019-01-09 14:48:59

【PYNQ-Z2申請(qǐng)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車(chē)

,分享項(xiàng)目的開(kāi)展,實(shí)施過(guò)程,結(jié)果,展示項(xiàng)目結(jié)果,并全程開(kāi)源項(xiàng)目源碼。本人一直非常希望學(xué)習(xí)與實(shí)踐Xilinx Zynq系列FPGA芯片與基于FPGA的神經(jīng)網(wǎng)絡(luò)技術(shù),很高興能夠遇到這次PYNQ試用活動(dòng),望審核大大同意申請(qǐng)。
2018-12-19 11:36:24

【PYNQ-Z2試用體驗(yàn)】神經(jīng)網(wǎng)絡(luò)基礎(chǔ)知識(shí)

學(xué)習(xí)和認(rèn)知科學(xué)領(lǐng)域,是一種模仿生物神經(jīng)網(wǎng)絡(luò)(動(dòng)物的中樞神經(jīng)系統(tǒng),特別是大腦)的結(jié)構(gòu)和功能的數(shù)學(xué)模型或計(jì)算模型,用于對(duì)函數(shù)進(jìn)行估計(jì)或近似。神經(jīng)網(wǎng)絡(luò)由大量的人工神經(jīng)元聯(lián)結(jié)進(jìn)行計(jì)算。大多數(shù)情況下人工神經(jīng)網(wǎng)絡(luò)
2019-03-03 22:10:19

【PYNQ-Z2試用體驗(yàn)】基于PYNQ-Z2的神經(jīng)網(wǎng)絡(luò)圖形識(shí)別[結(jié)項(xiàng)]

,使用imshow()函數(shù),繪制出我們待測(cè)試的數(shù)據(jù),從圖中可以看出,我們待識(shí)別的數(shù)字為7。接下來(lái)調(diào)用查詢(xún)函數(shù)query(),將圖像數(shù)據(jù)作為輸入?yún)?shù)。最終的輸出為7,與期望一致,表明我們的神經(jīng)網(wǎng)絡(luò)圖形識(shí)別
2019-03-18 21:51:33

【PYNQ-Z2試用體驗(yàn)】基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車(chē) - 項(xiàng)目規(guī)劃

` 本帖最后由 楓雪天 于 2019-3-2 23:12 編輯 本次試用PYNQ-Z2的目標(biāo)作品是“基于PYNQ的神經(jīng)網(wǎng)絡(luò)自動(dòng)駕駛小車(chē)”。在之前的一個(gè)多月內(nèi),已經(jīng)完成了整個(gè)項(xiàng)目初步實(shí)現(xiàn),在接下來(lái)
2019-03-02 23:10:52

【專(zhuān)輯精選】人工智能之神經(jīng)網(wǎng)絡(luò)教程與資料

電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個(gè)主題為一期,希望對(duì)各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁(yè)面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門(mén)資料MATLAB神經(jīng)網(wǎng)絡(luò)30個(gè)案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14

【案例分享】ART神經(jīng)網(wǎng)絡(luò)與SOM神經(jīng)網(wǎng)絡(luò)

今天學(xué)習(xí)了兩個(gè)神經(jīng)網(wǎng)絡(luò),分別是自適應(yīng)諧振(ART)神經(jīng)網(wǎng)絡(luò)與自組織映射(SOM)神經(jīng)網(wǎng)絡(luò)。整體感覺(jué)不是很難,只不過(guò)一些最基礎(chǔ)的概念容易理解不清。首先ART神經(jīng)網(wǎng)絡(luò)是競(jìng)爭(zhēng)學(xué)習(xí)的一個(gè)代表,競(jìng)爭(zhēng)型學(xué)習(xí)
2019-07-21 04:30:00

【案例分享】基于BP算法的前饋神經(jīng)網(wǎng)絡(luò)

}或o koko_{k})的誤差神經(jīng)元偏倚的變化量:ΔΘ ΔΘ Delta Theta=學(xué)習(xí)步長(zhǎng)η ηeta × ×imes 乘以神經(jīng)元的誤差BP神經(jīng)網(wǎng)絡(luò)算法過(guò)程網(wǎng)絡(luò)的初始化:包括權(quán)重和偏倚的初始化計(jì)算
2019-07-21 04:00:00

人工神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)方法有哪些?

人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類(lèi)似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線(xiàn)性,非平穩(wěn),復(fù)雜的實(shí)際問(wèn)題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21

人臉識(shí)別、語(yǔ)音翻譯、無(wú)人駕駛...這些高科技都離不開(kāi)深度神經(jīng)網(wǎng)絡(luò)了!

,如何用一個(gè)神經(jīng)網(wǎng)絡(luò),寫(xiě)出一套機(jī)器學(xué)習(xí)算法,來(lái)自動(dòng)識(shí)別未知的圖像。一個(gè) 4 層的神經(jīng)網(wǎng)絡(luò)輸入層經(jīng)過(guò)幾層算法得到輸出層 實(shí)現(xiàn)機(jī)器學(xué)習(xí)的方法有很多,近年被人們討論得多的方法就是深度學(xué)習(xí)深度學(xué)習(xí)是一種實(shí)現(xiàn)
2018-05-11 11:43:14

什么是深度學(xué)習(xí)?使用FPGA進(jìn)行深度學(xué)習(xí)的好處?

準(zhǔn)確的模型。有了上述機(jī)制,現(xiàn)在可以通過(guò)讓神經(jīng)網(wǎng)絡(luò)模型學(xué)習(xí)各種問(wèn)題來(lái)自動(dòng)解決問(wèn)題,創(chuàng)建高精度模型,并對(duì)新數(shù)據(jù)進(jìn)行推理。然而,由于單個(gè)神經(jīng)網(wǎng)絡(luò)只能解決簡(jiǎn)單的問(wèn)題,人們嘗試通過(guò)構(gòu)建深度神經(jīng)網(wǎng)絡(luò) (DNN
2023-02-17 16:56:59

什么是LSTM神經(jīng)網(wǎng)絡(luò)

簡(jiǎn)單理解LSTM神經(jīng)網(wǎng)絡(luò)
2021-01-28 07:16:57

從AlexNet到MobileNet,帶你入門(mén)深度神經(jīng)網(wǎng)絡(luò)

分辨率、轉(zhuǎn)換、遷移、描述等等都已經(jīng)可以使用深度學(xué)習(xí)技術(shù)實(shí)現(xiàn)。其背后的技術(shù)可以一言以蔽之:深度卷積神經(jīng)網(wǎng)絡(luò)具有超強(qiáng)的圖像特征提取能力。其中,風(fēng)格遷移算法的成功,其主要基于兩點(diǎn):1.兩張圖像經(jīng)過(guò)預(yù)訓(xùn)練
2018-05-08 15:57:47

使用keras搭建神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)基于深度學(xué)習(xí)算法的股票價(jià)格預(yù)測(cè)

本文使用keras搭建神經(jīng)網(wǎng)絡(luò),實(shí)現(xiàn)基于深度學(xué)習(xí)算法的股票價(jià)格預(yù)測(cè)。本文使用的數(shù)據(jù)來(lái)源為tushare,一個(gè)免費(fèi)開(kāi)源接口;且只取開(kāi)票價(jià)進(jìn)行預(yù)測(cè)。import numpy as npimport
2022-02-08 06:40:03

前面板自動(dòng)上色

利用ini文件前面板自動(dòng)上色
2016-01-07 22:54:55

卷積神經(jīng)網(wǎng)絡(luò)CNN介紹

深度學(xué)習(xí)】卷積神經(jīng)網(wǎng)絡(luò)CNN
2020-06-14 18:55:37

卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究及學(xué)習(xí)總結(jié)

深度學(xué)習(xí)工程師-吳恩達(dá)》03卷積神經(jīng)網(wǎng)絡(luò)深度卷積網(wǎng)絡(luò):實(shí)例探究 學(xué)習(xí)總結(jié)
2020-05-22 17:15:57

卷積神經(jīng)網(wǎng)絡(luò)如何使用

卷積神經(jīng)網(wǎng)絡(luò)(CNN)究竟是什么,鑒于神經(jīng)網(wǎng)絡(luò)在工程上經(jīng)歷了曲折的歷史,您為什么還會(huì)在意它呢? 對(duì)于這些非常中肯的問(wèn)題,我們似乎可以給出相對(duì)簡(jiǎn)明的答案。
2019-07-17 07:21:50

卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用

十余年來(lái)快速發(fā)展的嶄新領(lǐng)域,越來(lái)越受到研究者的關(guān)注。卷積神經(jīng)網(wǎng)絡(luò)(CNN)模型是深度學(xué)習(xí)模型中最重要的一種經(jīng)典結(jié)構(gòu),其性能在近年來(lái)深度學(xué)習(xí)任務(wù)上逐步提高。由于可以自動(dòng)學(xué)習(xí)樣本數(shù)據(jù)的特征表示,卷積
2022-08-02 10:39:39

卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)和常用框架

  卷積神經(jīng)網(wǎng)絡(luò)的層級(jí)結(jié)構(gòu)  卷積神經(jīng)網(wǎng)絡(luò)的常用框架
2020-12-29 06:16:44

卷積神經(jīng)網(wǎng)絡(luò)簡(jiǎn)介:什么是機(jī)器學(xué)習(xí)

列文章將只關(guān)注卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN的主要應(yīng)用領(lǐng)域是輸入數(shù)據(jù)中包含的對(duì)象的模式識(shí)別和分類(lèi)。CNN是一種用于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò)。此類(lèi)網(wǎng)絡(luò)由一個(gè)輸入層、多個(gè)卷積層和一個(gè)輸出層組成。卷積層是最重
2023-02-23 20:11:10

基于深度學(xué)習(xí)技術(shù)的智能機(jī)器人

“狗”。深度學(xué)習(xí)主要應(yīng)用在數(shù)據(jù)分析上,其核心技術(shù)包括:神經(jīng)網(wǎng)絡(luò)搭建、神經(jīng)網(wǎng)絡(luò)訓(xùn)練及調(diào)用。CNN神經(jīng)網(wǎng)絡(luò)訓(xùn)練 機(jī)器視覺(jué)中的圖像預(yù)處理屬于傳統(tǒng)技術(shù),包括形態(tài)變換、邊緣檢測(cè)、BLOB分析等。圖像在人眼和機(jī)器下
2018-05-31 09:36:03

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)

【新技術(shù)發(fā)布】基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署激光雷達(dá)可以準(zhǔn)確地完成三維空間的測(cè)量,具有抗干擾能力強(qiáng)、信息豐富等優(yōu)點(diǎn),但受限于數(shù)據(jù)量大、不規(guī)則等難點(diǎn),基于深度神經(jīng)網(wǎng)絡(luò)
2021-12-21 07:59:18

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署

基于深度神經(jīng)網(wǎng)絡(luò)的激光雷達(dá)物體識(shí)別系統(tǒng)及其嵌入式平臺(tái)部署
2021-01-04 06:26:23

基于BP神經(jīng)網(wǎng)絡(luò)的PID控制

最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線(xiàn)性表達(dá)能力,可以通過(guò)對(duì)系統(tǒng)性能的學(xué)習(xí)來(lái)實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47

基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性

FPGA實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)關(guān)鍵問(wèn)題分析基于FPGA的ANN實(shí)現(xiàn)方法基于FPGA的神經(jīng)網(wǎng)絡(luò)的性能評(píng)估及局限性
2021-04-30 06:58:13

基于光學(xué)芯片的神經(jīng)網(wǎng)絡(luò)訓(xùn)練解析,不看肯定后悔

基于光學(xué)芯片的神經(jīng)網(wǎng)絡(luò)訓(xùn)練解析,不看肯定后悔
2021-06-21 06:33:55

基于賽靈思FPGA的卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)設(shè)計(jì)

,看一下 FPGA 是否適用于解決大規(guī)模機(jī)器學(xué)習(xí)問(wèn)題。卷積神經(jīng)網(wǎng)絡(luò)是一種深度神經(jīng)網(wǎng)絡(luò) (DNN),工程師最近開(kāi)始將該技術(shù)用于各種識(shí)別任務(wù)。圖像識(shí)別、語(yǔ)音識(shí)別和自然語(yǔ)言處理是 CNN 比較常見(jiàn)的幾大應(yīng)用。
2019-06-19 07:24:41

如何構(gòu)建神經(jīng)網(wǎng)絡(luò)

原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測(cè)的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測(cè)能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測(cè)
2021-07-12 08:02:11

如何用卷積神經(jīng)網(wǎng)絡(luò)方法去解決機(jī)器監(jiān)督學(xué)習(xí)下面的分類(lèi)問(wèn)題?

人工智能下面有哪些機(jī)器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法去解決機(jī)器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類(lèi)問(wèn)題?
2021-06-16 08:09:03

如何設(shè)計(jì)BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法?

稱(chēng)為BP神經(jīng)網(wǎng)絡(luò)。采用BP神經(jīng)網(wǎng)絡(luò)模型能完成圖像數(shù)據(jù)的壓縮處理。在圖像壓縮中,神經(jīng)網(wǎng)絡(luò)的處理優(yōu)勢(shì)在于:巨量并行性;信息處理和存儲(chǔ)單元結(jié)合在一起;自組織自學(xué)習(xí)功能。與傳統(tǒng)的數(shù)字信號(hào)處理器DSP
2019-08-08 06:11:30

改善深層神經(jīng)網(wǎng)絡(luò)--超參數(shù)優(yōu)化、batch正則化和程序框架 學(xué)習(xí)總結(jié)

深度學(xué)習(xí)工程師-吳恩達(dá)》02改善深層神經(jīng)網(wǎng)絡(luò)--超參數(shù)優(yōu)化、batch正則化和程序框架 學(xué)習(xí)總結(jié)
2020-06-16 14:52:01

機(jī)器學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)參數(shù)的代價(jià)函數(shù)

吳恩達(dá)機(jī)器學(xué)習(xí)筆記之神經(jīng)網(wǎng)絡(luò)參數(shù)的反向傳播算法
2019-05-22 15:11:21

用FPGA去實(shí)現(xiàn)大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)

1、加速神經(jīng)網(wǎng)絡(luò)的必備開(kāi)源項(xiàng)目  到底純FPGA適不適合這種大型神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)?這個(gè)問(wèn)題其實(shí)我們不適合回答,但是FPGA廠商是的實(shí)際操作是很有權(quán)威性的,現(xiàn)在不論是Intel還是Xilinx都沒(méi)有在
2022-10-24 16:10:50

脈沖神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)方式有哪幾種?

脈沖神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)方式有哪幾種?
2021-10-26 06:58:01

計(jì)算機(jī)視覺(jué)神經(jīng)網(wǎng)絡(luò)資料全集

CV之YOLOv3:深度學(xué)習(xí)之計(jì)算機(jī)視覺(jué)神經(jīng)網(wǎng)絡(luò)Yolov3-5clessses訓(xùn)練自己的數(shù)據(jù)集全程記錄(第二次)——Jason niu
2018-12-24 11:52:25

輕量化神經(jīng)網(wǎng)絡(luò)的相關(guān)資料下載

原文鏈接:【嵌入式AI部署&基礎(chǔ)網(wǎng)絡(luò)篇】輕量化神經(jīng)網(wǎng)絡(luò)精述--MobileNet V1-3、ShuffleNet V1-2、NasNet深度神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用在圖像分類(lèi)、物體檢測(cè)等機(jī)器
2021-12-14 07:35:25

遺傳算法 神經(jīng)網(wǎng)絡(luò) 解析

關(guān)于遺傳算法和神經(jīng)網(wǎng)絡(luò)
2013-05-19 10:22:16

BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計(jì)

BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計(jì) 0 引 言??? 神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡(jiǎn)稱(chēng),是當(dāng)前的研究熱點(diǎn)之一。人
2009-11-13 09:50:051408

BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計(jì)

BP神經(jīng)網(wǎng)絡(luò)圖像壓縮算法乘累加單元的FPGA設(shè)計(jì) 概 述神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡(jiǎn)稱(chēng),是當(dāng)前的研究熱點(diǎn)之一。人腦在接受視覺(jué)
2010-03-29 10:05:12727

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)

微軟研究人員在深度神經(jīng)網(wǎng)絡(luò)(deep neural network)上取得突破, 使其在性能上能趕上目前最先進(jìn)的語(yǔ)音識(shí)別技術(shù)
2016-08-17 11:54:0647

神經(jīng)網(wǎng)絡(luò)圖像壓縮算法的FPGA實(shí)現(xiàn)技術(shù)研究

神經(jīng)網(wǎng)絡(luò)圖像壓縮算法的FPGA實(shí)現(xiàn)技術(shù)研究,下來(lái)看看
2016-09-17 07:29:2319

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》講義
2017-07-20 08:58:240

深度神經(jīng)網(wǎng)絡(luò)的壓縮和正則化剖析

利用深度壓縮和DSD訓(xùn)練來(lái)提高預(yù)測(cè)精度。 深度神經(jīng)網(wǎng)絡(luò)已經(jīng)成為解決計(jì)算機(jī)視覺(jué)、語(yǔ)音識(shí)別和自然語(yǔ)言處理等機(jī)器學(xué)習(xí)任務(wù)的最先進(jìn)的技術(shù)。盡管如此,深度學(xué)習(xí)算法是計(jì)算密集型和存儲(chǔ)密集型的,這使得它難以被部署
2017-11-16 13:11:351602

基于遞歸神經(jīng)網(wǎng)絡(luò)和前饋神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)預(yù)測(cè)算法

蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè)是結(jié)構(gòu)生物學(xué)中的一個(gè)重要問(wèn)題。針對(duì)八類(lèi)蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè),提出了一種基于遞歸神經(jīng)網(wǎng)絡(luò)和前饋神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)預(yù)測(cè)算法。該算法通過(guò)雙向遞歸神經(jīng)網(wǎng)絡(luò)建模氨基酸間的局部和長(zhǎng)程相互作用
2017-12-03 09:41:149

詳細(xì)解析神經(jīng)網(wǎng)絡(luò)的含義、挑戰(zhàn)、類(lèi)型、應(yīng)用

Statsbot深度學(xué)習(xí)開(kāi)發(fā)者Jay Shah帶你入門(mén)神經(jīng)網(wǎng)絡(luò),一起了解自動(dòng)編碼器、卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)等流行的神經(jīng)網(wǎng)絡(luò)類(lèi)型及其應(yīng)用。
2018-01-15 17:11:388954

帶你了解深入深度學(xué)習(xí)的核心:神經(jīng)網(wǎng)絡(luò)

深度學(xué)習(xí)和人工智能是 2017 年的熱詞;2018 年,這兩個(gè)詞愈發(fā)火熱,但也更加容易混淆。我們將深入深度學(xué)習(xí)的核心,也就是神經(jīng)網(wǎng)絡(luò)
2018-04-02 09:47:099201

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》中文版電子教材免費(fèi)下載

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)》是一本免費(fèi)的在線(xiàn)書(shū)。本書(shū)會(huì)教會(huì)你: ? 神經(jīng)網(wǎng)絡(luò),一種美妙的受生物學(xué)啟發(fā)的編程范式,可以讓計(jì)算機(jī)從觀測(cè)數(shù)據(jù)中進(jìn)行學(xué)習(xí) ? 深度學(xué)習(xí),一個(gè)強(qiáng)有力的用于神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)的眾多技術(shù)的集合
2018-08-02 17:47:310

【人工神經(jīng)網(wǎng)絡(luò)基礎(chǔ)】為什么神經(jīng)網(wǎng)絡(luò)選擇了“深度”?

由 Demi 于 星期四, 2018-09-06 09:33 發(fā)表 現(xiàn)在提到“神經(jīng)網(wǎng)絡(luò)”和“深度神經(jīng)網(wǎng)絡(luò)”,會(huì)覺(jué)得兩者沒(méi)有什么區(qū)別,神經(jīng)網(wǎng)絡(luò)還能不是“深度”(deep)的嗎?我們常用
2018-09-06 20:48:01557

深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)是什么樣的?

怎樣理解非線(xiàn)性變換和多層網(wǎng)絡(luò)后的線(xiàn)性可分,神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)就是學(xué)習(xí)如何利用矩陣的線(xiàn)性變換加激活函數(shù)的非線(xiàn)性變換。
2018-10-23 14:44:213741

快速了解神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的教程資料免費(fèi)下載

本文檔的詳細(xì)介紹的是快速了解神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的教程資料免費(fèi)下載主要內(nèi)容包括了:機(jī)器學(xué)習(xí)概述,線(xiàn)性模型,前饋神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò),循環(huán)神經(jīng)網(wǎng)絡(luò)網(wǎng)絡(luò)優(yōu)化與正則化,記憶與注意力機(jī)制,無(wú)監(jiān)督學(xué)習(xí),概率圖模型,玻爾茲曼機(jī),深度信念網(wǎng)絡(luò)深度生成模型,深度強(qiáng)化學(xué)習(xí)
2019-02-11 08:00:0025

探索深度學(xué)習(xí)藍(lán)圖新理論 讓神經(jīng)網(wǎng)絡(luò)更深更窄

深度學(xué)習(xí)需要更多的理論!這是學(xué)術(shù)界的一個(gè)共識(shí)。神經(jīng)網(wǎng)絡(luò)十分強(qiáng)大,但往往不可預(yù)測(cè)。
2019-02-13 15:30:341692

如何基于深度神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)一個(gè)端到端的自動(dòng)駕駛模型?

如何基于深度神經(jīng)網(wǎng)絡(luò)設(shè)計(jì)一個(gè)端到端的自動(dòng)駕駛模型?如何設(shè)計(jì)一個(gè)基于增強(qiáng)學(xué)習(xí)自動(dòng)駕駛決策系統(tǒng)?
2019-04-29 16:44:054404

3d打印上色流程

本視頻主要詳細(xì)介紹了3d打印上色流程,分別是底色、色塊上色、色彩調(diào)整、局部細(xì)節(jié)上色、光感調(diào)整。
2019-05-19 09:31:098166

神經(jīng)網(wǎng)絡(luò)如何識(shí)別圖片的內(nèi)容?

神經(jīng)網(wǎng)絡(luò)展示大量的人和車(chē)的圖片,并告知其哪一張是車(chē),哪一張是人,最終,這個(gè)神經(jīng)網(wǎng)絡(luò)就可以學(xué)會(huì)區(qū)分人和車(chē)。當(dāng)新輸入一張車(chē)或人的圖片時(shí),它會(huì)告訴你這是一個(gè)人還是一輛汽車(chē)。
2020-10-26 14:58:223549

基于深度神經(jīng)網(wǎng)絡(luò)的文本分類(lèi)分析

  隨著深度學(xué)習(xí)技術(shù)的快速發(fā)展,許多研究者嘗試?yán)?b class="flag-6" style="color: red">深度學(xué)習(xí)來(lái)解決文本分類(lèi)問(wèn)題,特別是在卷積神經(jīng)網(wǎng)絡(luò)和循環(huán)神經(jīng)網(wǎng)絡(luò)方面,出現(xiàn)了許多新穎且有效的分類(lèi)方法。對(duì)基于深度神經(jīng)網(wǎng)絡(luò)的文本分類(lèi)問(wèn)題進(jìn)行分析,介紹
2021-03-10 16:56:5636

神經(jīng)網(wǎng)絡(luò)的方法學(xué)習(xí)課件免費(fèi)下載

  本文檔的主要內(nèi)容詳細(xì)介紹的是神經(jīng)網(wǎng)絡(luò)的方法學(xué)習(xí)課件免費(fèi)下載包括了:神經(jīng)網(wǎng)絡(luò)發(fā)展史,神經(jīng)網(wǎng)絡(luò)理論基礎(chǔ),深度神經(jīng)網(wǎng)絡(luò)進(jìn)展,發(fā)展趨勢(shì)與展望
2021-03-11 10:10:3716

神經(jīng)網(wǎng)絡(luò)圖像壓縮算法的FPGA實(shí)現(xiàn)技術(shù)研究論文免費(fèi)下載

神經(jīng)網(wǎng)絡(luò)圖像壓縮是圖像壓縮和神經(jīng)網(wǎng)絡(luò)領(lǐng)域的主要研究方向之一,基于多層前饋神經(jīng)網(wǎng)絡(luò)的壓縮算法在神經(jīng)網(wǎng)絡(luò)壓縮算法中最有代表性。本文結(jié)合國(guó)家某科研項(xiàng)目對(duì)該類(lèi)算法的硬件實(shí)現(xiàn)進(jìn)行研究,具有重要的理論和實(shí)用價(jià)值。
2021-03-22 16:06:5411

綜述深度學(xué)習(xí)的卷積神經(jīng)網(wǎng)絡(luò)模型應(yīng)用及發(fā)展

上逐步提高。由于可以自動(dòng)學(xué)習(xí)樣本數(shù)據(jù)的特征表示,卷積神經(jīng)網(wǎng)絡(luò)已經(jīng)廣泛應(yīng)用于圖像分類(lèi)、目標(biāo)檢測(cè)、語(yǔ)乂分割以及自然語(yǔ)言處理等領(lǐng)域。首先分析了典型卷積神經(jīng)網(wǎng)絡(luò)模型為提髙其性能増加網(wǎng)絡(luò)深度以及寬度的模型結(jié)構(gòu),分析了采用注
2021-04-02 15:29:0420

3小時(shí)學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)課件下載

3小時(shí)學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)課件下載
2021-04-19 09:36:550

深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)層級(jí)分解綜述

隨著深度學(xué)習(xí)的不斷發(fā)展,卷積神經(jīng)網(wǎng)絡(luò)(CNN)在目標(biāo)檢測(cè)與圖像分類(lèi)中受到研究者的廣泛關(guān)注。CNN從 Lenet5網(wǎng)絡(luò)發(fā)展到深度殘差網(wǎng)絡(luò),其層數(shù)不斷增加。基于神經(jīng)網(wǎng)絡(luò)中“深度”的含義,在確保感受野相同
2021-05-19 16:11:005

深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)和函數(shù)

深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)子集,它使用神經(jīng)網(wǎng)絡(luò)來(lái)執(zhí)行學(xué)習(xí)和預(yù)測(cè)。深度學(xué)習(xí)在各種任務(wù)中都表現(xiàn)出了驚人的表現(xiàn),無(wú)論是文本、時(shí)間序列還是計(jì)算機(jī)視覺(jué)。
2022-04-07 10:17:051380

神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)知識(shí)

都離不開(kāi)人工智能 領(lǐng)域研究者的長(zhǎng)期努力.特別是最近這幾年,得益于數(shù)據(jù)的增多、計(jì)算能力的增 強(qiáng)、學(xué)習(xí)算法的成熟以及應(yīng)用場(chǎng)景的豐富,越來(lái)越多的人開(kāi)始關(guān)注這個(gè)“嶄新”的 研究領(lǐng)域:深度學(xué)習(xí)深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)為主要模型
2022-07-19 14:21:080

深度學(xué)習(xí)與圖神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)分享:Transformer

神經(jīng)網(wǎng)絡(luò)(CNN)、長(zhǎng)短期記憶(LSTM)和自動(dòng)編碼器)徹底改變了。曾有學(xué)者將本次人工智能浪潮的興起歸因于三個(gè)條件,分別是: ·?計(jì)算資源的快速發(fā)展(如GPU) ·?大量訓(xùn)練數(shù)據(jù)的可用性 ·?深度學(xué)習(xí)從歐氏空間數(shù)據(jù)中提取潛在特征
2022-09-22 10:16:34969

什么是神經(jīng)網(wǎng)絡(luò)?什么是卷積神經(jīng)網(wǎng)絡(luò)

在介紹卷積神經(jīng)網(wǎng)絡(luò)之前,我們先回顧一下神經(jīng)網(wǎng)絡(luò)的基本知識(shí)。就目前而言,神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)算法的核心,我們所熟知的很多深度學(xué)習(xí)算法的背后其實(shí)都是神經(jīng)網(wǎng)絡(luò)
2023-02-23 09:14:442256

基于進(jìn)化卷積神經(jīng)網(wǎng)絡(luò)的屏蔽效能參數(shù)預(yù)測(cè)

進(jìn)化神經(jīng)網(wǎng)絡(luò)是進(jìn)化算法和深度學(xué)習(xí)兩者相結(jié)合的產(chǎn)物,在算法中神經(jīng)網(wǎng)絡(luò)的權(quán)值和閾值在初始種群個(gè)體染色體中,再用進(jìn)化算法優(yōu)化權(quán)值和閾值,同時(shí)具有深度神經(jīng)網(wǎng)絡(luò)自動(dòng)構(gòu)建和學(xué)習(xí)訓(xùn)練模型的優(yōu)勢(shì)。
2023-04-07 16:21:35203

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來(lái)源:青榴實(shí)驗(yàn)室 1、引子 深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類(lèi)或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。 在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層
2023-05-15 14:20:01550

淺析三種主流深度神經(jīng)網(wǎng)絡(luò)

來(lái)源:青榴實(shí)驗(yàn)室1、引子深度神經(jīng)網(wǎng)絡(luò)(DNNs)最近在圖像分類(lèi)或語(yǔ)音識(shí)別等復(fù)雜機(jī)器學(xué)習(xí)任務(wù)中表現(xiàn)出的優(yōu)異性能令人印象深刻。在本文中,我們將了解深度神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識(shí)和三個(gè)最流行神經(jīng)網(wǎng)絡(luò):多層神經(jīng)網(wǎng)絡(luò)
2023-05-17 09:59:19946

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法

卷積神經(jīng)網(wǎng)絡(luò)原理:卷積神經(jīng)網(wǎng)絡(luò)模型和卷積神經(jīng)網(wǎng)絡(luò)算法 卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種基于深度學(xué)習(xí)的人工神經(jīng)網(wǎng)絡(luò),是深度學(xué)習(xí)技術(shù)的重要應(yīng)用之
2023-08-17 16:30:30806

卷積神經(jīng)網(wǎng)絡(luò)是什么?卷積神經(jīng)網(wǎng)絡(luò)的工作原理和應(yīng)用

  卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是一種深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò),主要用于圖像和視頻的識(shí)別、分類(lèi)和預(yù)測(cè),是計(jì)算機(jī)視覺(jué)領(lǐng)域中應(yīng)用最廣泛的深度學(xué)習(xí)算法之一。該網(wǎng)絡(luò)模型可以自動(dòng)從原始數(shù)據(jù)中學(xué)習(xí)有用的特征,并將其映射到相應(yīng)的類(lèi)別。
2023-08-21 17:03:461064

卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的優(yōu)缺點(diǎn) 卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的區(qū)別

深度神經(jīng)網(wǎng)絡(luò)是一種基于神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)算法,其主要特點(diǎn)是由多層神經(jīng)元構(gòu)成,可以根據(jù)數(shù)據(jù)自動(dòng)調(diào)整神經(jīng)元之間的權(quán)重,從而實(shí)現(xiàn)對(duì)大規(guī)模數(shù)據(jù)進(jìn)行預(yù)測(cè)和分類(lèi)。卷積神經(jīng)網(wǎng)絡(luò)深度神經(jīng)網(wǎng)絡(luò)的一種,主要應(yīng)用于圖像和視頻處理領(lǐng)域。
2023-08-21 17:07:361867

淺析深度神經(jīng)網(wǎng)絡(luò)壓縮與加速技術(shù)

深度神經(jīng)網(wǎng)絡(luò)深度學(xué)習(xí)的一種框架,它是一種具備至少一個(gè)隱層的神經(jīng)網(wǎng)絡(luò)。與淺層神經(jīng)網(wǎng)絡(luò)類(lèi)似
2023-10-11 09:14:33363

已全部加載完成

主站蜘蛛池模板: 美剧免费在线观看| a天堂资源在线观看| 午夜性a一级毛片| 26uuu欧美日本| 亚洲国产香蕉视频欧美| 免费播放黄色| 日日做夜夜爽夜夜爽| 午夜性爽快| 欧美性xxxxbbbb| 天天色天天爽| 男女在线视频| 美女污污网站| 久久久午夜精品| 真实国产伦子系| 久久国产综合| 可以免费看黄色的网站| 91深夜福利| 综合婷婷| 国内精品一级毛片免费看| 国产午夜精品久久久久免费视小说| 99久久免费精品国产免费高清| 毛片大全在线| 激情综合在线| 亚洲欧美在线播放| 操狠狠| 黄色在线播放网站| 三级毛片免费看| 天堂在线链接| 伊人啪啪网| 国产高清视频在线播放www色| 五月激情六月| 日本黄色短片| 久久久久国产精品免费看| 亚洲成人精品在线| 一级片在线观看视频| 男女一进一出抽搐免费视频| 久久国产乱子伦精品免| 色涩在线| 免费看污黄视频软件| 高颜值露脸极品在线播放| 四虎亚洲精品|