美國斯坦福大學(xué)的研究人員已經(jīng)證明,可以直接在光學(xué)芯片上訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)。這一重大突破表明,光學(xué)電路可以實(shí)現(xiàn)基于電子的人工神經(jīng)網(wǎng)絡(luò)的關(guān)鍵功能,進(jìn)而可以以更便宜、更快速和更節(jié)能的方式執(zhí)行語音識別、圖像識別等復(fù)雜任務(wù)。
2018-07-30 08:48:496741 ,許多研究人員希望AI也有這種天生的能力。 新研究發(fā)現(xiàn),人工神經(jīng)網(wǎng)絡(luò)可以進(jìn)化到無需學(xué)習(xí)即可執(zhí)行任務(wù)的程度。該技術(shù)有望帶來這樣的AI:極其擅長處理各種任務(wù),比如為照片添加標(biāo)簽或駕駛汽車。 人工神經(jīng)網(wǎng)絡(luò)對彼此之間傳輸信息
2020-10-13 14:00:572077 世界杯預(yù)測提供了科技感十足的答案。俄羅斯大學(xué)生預(yù)測德國奪冠俄羅斯衛(wèi)星網(wǎng)近日發(fā)布消息稱,俄羅斯彼爾姆國立研究大學(xué)的一名物理系大四學(xué)生維克多?扎科派洛,建立了一個能預(yù)測2018年世界杯冠軍的人工智能神經(jīng)網(wǎng)絡(luò)
2019-07-24 00:41:23
常有用的,例如,搜索引擎可以廣泛使用C ++。在AI項(xiàng)目中,C++可用于統(tǒng)計(jì),如神經(jīng)網(wǎng)絡(luò)。另外算法也可以在C ++被廣泛地快速執(zhí)行,游戲中的AI主要用C ++編碼,以便更快的執(zhí)行和響應(yīng)時間。更多單片機(jī),嵌入式
2018-09-12 10:45:38
人工神經(jīng)網(wǎng)絡(luò)是根據(jù)人的認(rèn)識過程而開發(fā)出的一種算法。假如我們現(xiàn)在只有一些輸入和相應(yīng)的輸出,而對如何由輸入得到輸出的機(jī)理并不清楚,那么我們可以把輸入與輸出之間的未知過程看成是一個“網(wǎng)絡(luò)”,通過不斷地給
2008-06-19 14:40:42
人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種類似生物神經(jīng)網(wǎng)絡(luò)的信息處理結(jié)構(gòu),它的提出是為了解決一些非線性,非平穩(wěn),復(fù)雜的實(shí)際問題。那有哪些辦法能實(shí)現(xiàn)人工神經(jīng)網(wǎng)絡(luò)呢?
2019-08-01 08:06:21
的基本處理單元,它是神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)基礎(chǔ)。神經(jīng)元是以生物的神經(jīng)系統(tǒng)的神經(jīng)細(xì)胞為基礎(chǔ)的生物模型。在人們對生物神經(jīng)系統(tǒng)進(jìn)行研究,以探討人工智能的機(jī)制時,把神經(jīng)元數(shù)學(xué)化,從而產(chǎn)生了神經(jīng)元數(shù)學(xué)模型。因此,要了解人工神經(jīng)模型就必須先了解生物神經(jīng)元模型。`
2018-10-23 16:16:02
人工神經(jīng)網(wǎng)絡(luò)課件
2016-06-19 10:15:48
`我思故我在 亮出你的觀點(diǎn)自從類神經(jīng)網(wǎng)絡(luò)算法可以用強(qiáng)大的運(yùn)算能力加以模擬之后,強(qiáng)人工智能才開始出現(xiàn)。即便如此,以目前 CPU 的運(yùn)算能力來講,模擬類神經(jīng)網(wǎng)絡(luò)算法的代價非常之大,于是有人想到了用
2017-08-23 15:42:16
研究人員。人工智能的技術(shù)日益成熟,在應(yīng)用領(lǐng)域中也不斷擴(kuò)大,由此可以想象得出,未來人工智能帶來的潛能是不可估量的。說超過人類大腦也不為過。 如此,也有一部分人覺得人工智能帶來的機(jī)遇是和危險并存的。猶如耳畔
2017-06-24 14:47:43
人工智能發(fā)展第一階段,開發(fā)近紅外光激發(fā)的納米探針,監(jiān)測大腦深層活動,理解神經(jīng)系統(tǒng)功能機(jī)制。開發(fā)、設(shè)計(jì)電壓敏感納米探針一直是個技術(shù)難關(guān)。群體神經(jīng)元活動的在體監(jiān)測是揭示神經(jīng)系統(tǒng)功能機(jī)制的關(guān)鍵。近日《美國
2021-07-28 07:51:24
的觀測。它可用于腫瘤活檢、再生醫(yī)學(xué),還可在培育器官或身體組織時觀察細(xì)胞如何發(fā)生實(shí)時變化。據(jù)羿戓信息所了解,研究團(tuán)隊(duì)使用一種被稱為“卷積神經(jīng)網(wǎng)絡(luò)”的機(jī)器學(xué)習(xí)技術(shù)訓(xùn)練計(jì)算機(jī),讓后者識別線粒體等的圖像。他們測試了12種細(xì)胞結(jié)構(gòu),計(jì)算機(jī)的多數(shù)識別結(jié)果與熒光標(biāo)記圖像相符,未來接受更多的訓(xùn)練還能進(jìn)一步提高準(zhǔn)確性。
2018-10-15 05:21:49
摘要: 閱讀本文以了解更多關(guān)于人工智能、機(jī)器學(xué)習(xí)和深度學(xué)習(xí)方面的知識,以及它們對商業(yè)化意味著什么。如果正確的利用模式識別進(jìn)行商業(yè)預(yù)測和決策,那么會為企業(yè)帶來巨大的利益。機(jī)器學(xué)習(xí)(ML)研究這些模式
2018-08-27 10:16:55
點(diǎn)擊上方“藍(lán)字”,關(guān)注我們,感謝!人工智能(AI)以及利用神經(jīng)網(wǎng)絡(luò)的深度學(xué)習(xí)是實(shí)現(xiàn)高級駕駛輔助系統(tǒng)(ADAS)和更高程度車輛自主性的強(qiáng)大技術(shù)。隨著人工智能研究的快速發(fā)展,設(shè)計(jì)人員正面臨激烈的競爭
2021-12-17 08:17:41
出來用以解決實(shí)際問題。因此,生物神經(jīng)網(wǎng)絡(luò)主要研究智能的機(jī)理;人工神經(jīng)網(wǎng)絡(luò)主要研究智能機(jī)理的實(shí)現(xiàn),兩者相輔相成。文章轉(zhuǎn)載自21ic,作者h(yuǎn)qyjcdzx。
2022-03-05 14:15:07
。對于人工智能用例在當(dāng)前物聯(lián)網(wǎng)環(huán)境中變?yōu)楝F(xiàn)實(shí),必須滿足三個條件:非常大的真實(shí)數(shù)據(jù)集具有重要處理能力的硬件架構(gòu)和環(huán)境開發(fā)新的強(qiáng)大算法和人工神經(jīng)網(wǎng)絡(luò)(ANN)以充分利用上述內(nèi)容很明顯,后兩種要求相互依賴,并且
2019-05-29 10:46:39
正在從事智能假肢的課題,需要用到,這篇給我的實(shí)現(xiàn)起到到很好的指導(dǎo)意義,特此轉(zhuǎn)載,也特此感謝作者,利用顏色傳感器讀取pH試紙的顏色,然后得到他代表的pH值。一開始想擬合出一個關(guān)于RGB和pH的函數(shù),但是總是效果不好。于是利用神經(jīng)網(wǎng)絡(luò)來根據(jù)RGB判斷他的pH值。思路是首先利用MATLAB訓(xùn)練...
2021-08-17 08:19:35
在數(shù)小時內(nèi)執(zhí)行相同的任務(wù)。這有助于更快地將半導(dǎo)體芯片推向市場,并使工程師能夠?qū)W⒂诟鼜?fù)雜的工作。機(jī)器學(xué)習(xí)機(jī)器學(xué)習(xí)是一種人工智能,它從數(shù)據(jù)中學(xué)習(xí)各種模式和見解,并應(yīng)用這些學(xué)習(xí)來做出準(zhǔn)確而有見地的預(yù)測。在
2022-11-22 15:02:21
` 如今越來越多的人開始重視家庭安全問題,所以家用網(wǎng)絡(luò)攝像機(jī)理所當(dāng)然成為人們關(guān)注的焦點(diǎn),這也是近年來智能攝像頭越來越火的原因。如果你也擔(dān)心家中的安全,家用網(wǎng)絡(luò)攝像機(jī)無疑是一個很好的解決方案。打開
2016-03-24 17:50:28
第1章 概述 1.1 人工神經(jīng)網(wǎng)絡(luò)研究與發(fā)展 1.2 生物神經(jīng)元 1.3 人工神經(jīng)網(wǎng)絡(luò)的構(gòu)成 第2章人工神經(jīng)網(wǎng)絡(luò)基本模型 2.1 MP模型 2.2 感知器模型 2.3 自適應(yīng)線性
2012-03-20 11:32:43
近年來,深度學(xué)習(xí)的繁榮,尤其是神經(jīng)網(wǎng)絡(luò)的發(fā)展,顛覆了傳統(tǒng)機(jī)器學(xué)習(xí)特征工程的時代,將人工智能的浪潮推到了歷史最高點(diǎn)。然而,盡管各種神經(jīng)網(wǎng)絡(luò)模型層出不窮,但往往模型性能越高,對超參數(shù)的要求也越來越嚴(yán)格
2019-09-11 11:52:14
使用最為有利的系統(tǒng)。訓(xùn)練往往在線下通過基于 CPU 的系統(tǒng)、圖形處理器 (GPU) 或現(xiàn)場可編程門陣列 (FPGA) 來完成。由于計(jì)算功能強(qiáng)大且設(shè)計(jì)人員對其很熟悉,這些是用于神經(jīng)網(wǎng)絡(luò)訓(xùn)練的最為理想
2017-12-21 17:11:34
(http://www.ztwl.cn/)網(wǎng)絡(luò)攝像機(jī)網(wǎng)絡(luò)攝像機(jī)就是擁有獨(dú)立的IP地址和嵌入式的操作系統(tǒng)從而實(shí)現(xiàn)網(wǎng)絡(luò)監(jiān)控的智能化產(chǎn)品。輕此又被叫做IP 攝像機(jī)或IP CAMERA。 它可以通過LAN
2009-05-26 09:57:13
,神經(jīng)網(wǎng)絡(luò)之父Hiton始終堅(jiān)持計(jì)算機(jī)能夠像人類一樣思考,用直覺而非規(guī)則。盡管這一觀點(diǎn)被無數(shù)人質(zhì)疑過無數(shù)次,但隨著數(shù)據(jù)的不斷增長和數(shù)據(jù)挖掘技術(shù)的不斷進(jìn)步,神經(jīng)網(wǎng)絡(luò)開始在語音和圖像等方面超越基于邏輯的人工智能
2018-06-05 10:11:50
完畢(根據(jù)深度學(xué)習(xí)框架的要求轉(zhuǎn)換成對應(yīng)格式)、神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)準(zhǔn)備完畢(以文本形式按照某種語法描述),神經(jīng)網(wǎng)絡(luò)算法的訓(xùn)練過程幾乎是自動的(約等于執(zhí)行某個訓(xùn)練命令)。算法開發(fā)人員需要根據(jù)訓(xùn)練過程中所反映出
2020-05-18 17:13:24
習(xí)神經(jīng)神經(jīng)網(wǎng)絡(luò),對于神經(jīng)網(wǎng)絡(luò)的實(shí)現(xiàn)是如何一直沒有具體實(shí)現(xiàn)一下:現(xiàn)看到一個簡單的神經(jīng)網(wǎng)絡(luò)模型用于訓(xùn)練的輸入數(shù)據(jù):對應(yīng)的輸出數(shù)據(jù):我們這里設(shè)置:1:節(jié)點(diǎn)個數(shù)設(shè)置:輸入層、隱層、輸出層的節(jié)點(diǎn)
2021-08-18 07:25:21
,隨機(jī)森林,K-均值算法,支持向量機(jī)和人工神經(jīng)網(wǎng)絡(luò)等等。在應(yīng)用方面表現(xiàn)也異常突出,目前89%的人工智能專利申請和40%人工智能范圍相關(guān)專利都屬于機(jī)器學(xué)習(xí)的范疇,可見機(jī)器學(xué)習(xí)的時代化進(jìn)程多么迅速。歸結(jié)到
2023-02-17 11:00:15
`本篇主要介紹:人工神經(jīng)網(wǎng)絡(luò)的起源、簡單神經(jīng)網(wǎng)絡(luò)模型、更多神經(jīng)網(wǎng)絡(luò)模型、機(jī)器學(xué)習(xí)的步驟:訓(xùn)練與預(yù)測、訓(xùn)練的兩階段:正向推演與反向傳播、以TensorFlow + Excel表達(dá)訓(xùn)練流程以及AI普及化教育之路。`
2020-11-05 17:48:39
項(xiàng)目名稱:基于PYNQ的卷積神經(jīng)網(wǎng)絡(luò)加速試用計(jì)劃:申請理由:本人研究生在讀,想要利用PYNQ深入探索卷積神經(jīng)網(wǎng)絡(luò)的硬件加速,在PYNQ上實(shí)現(xiàn)圖像的快速處理項(xiàng)目計(jì)劃:1、在PC端實(shí)現(xiàn)Lnet網(wǎng)絡(luò)的訓(xùn)練
2018-12-19 11:37:22
上的USB攝像頭作為主要傳感器,采集得到的前方道路圖像經(jīng)過數(shù)據(jù)預(yù)處理后,接入神經(jīng)網(wǎng)絡(luò)的輸入層,由神經(jīng)網(wǎng)絡(luò)的輸出層狀態(tài)將生成控制信號,控制小車的直走、左轉(zhuǎn)、右轉(zhuǎn)、與停止。交通標(biāo)識識別功能同樣使用USB
2019-03-02 23:10:52
電子發(fā)燒友總結(jié)了以“神經(jīng)網(wǎng)絡(luò)”為主題的精選干貨,今后每天一個主題為一期,希望對各位有所幫助!(點(diǎn)擊標(biāo)題即可進(jìn)入頁面下載相關(guān)資料)人工神經(jīng)網(wǎng)絡(luò)算法的學(xué)習(xí)方法與應(yīng)用實(shí)例(pdf彩版)卷積神經(jīng)網(wǎng)絡(luò)入門資料MATLAB神經(jīng)網(wǎng)絡(luò)30個案例分析《matlab神經(jīng)網(wǎng)絡(luò)應(yīng)用設(shè)計(jì)》深度學(xué)習(xí)和神經(jīng)網(wǎng)絡(luò)
2019-05-07 19:18:14
元,它決定了該輸入向量在地位空間中的位置。SOM神經(jīng)網(wǎng)絡(luò)訓(xùn)練的目的就是為每個輸出層神經(jīng)元找到合適的權(quán)向量,以達(dá)到保持拓?fù)浣Y(jié)構(gòu)的目的。SOM的訓(xùn)練過程其實(shí)很簡單,就是接收到一個訓(xùn)練樣本后,每個輸出層神經(jīng)
2019-07-21 04:30:00
神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)基礎(chǔ)。神經(jīng)元是以生物的神經(jīng)系統(tǒng)的神經(jīng)細(xì)胞為基礎(chǔ)的生物模型。在人們對生物神經(jīng)系統(tǒng)進(jìn)行研究,以探討人工智能的機(jī)制時,把神經(jīng)元數(shù)學(xué)化,從而產(chǎn)生了神經(jīng)元數(shù)學(xué)模型。因此,要了解人工神經(jīng)模型就必須
2023-09-13 16:41:18
優(yōu)化神經(jīng)網(wǎng)絡(luò)訓(xùn)練方法有哪些?
2022-09-06 09:52:36
請問用matlab編程進(jìn)行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時,訓(xùn)練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進(jìn)行外推預(yù)測?
2014-02-08 14:23:06
速度增長,需要新的硬件和軟件創(chuàng)新來繼續(xù)平衡內(nèi)存,計(jì)算效率和帶寬。神經(jīng)網(wǎng)絡(luò) (NN) 的訓(xùn)練對于 AI 能力的持續(xù)提升至關(guān)重要,今天標(biāo)志著這一演變的激動人心的一步,Arm、英特爾和 NVIDIA 聯(lián)合
2022-09-15 15:15:46
卷積神經(jīng)網(wǎng)絡(luò)模型發(fā)展及應(yīng)用轉(zhuǎn)載****地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度學(xué)習(xí)是機(jī)器學(xué)習(xí)和人工智能研究的最新趨勢,作為一個
2022-08-02 10:39:39
不僅限于已知的訓(xùn)練圖像。該神經(jīng)網(wǎng)絡(luò)需要映射到MCU中。模式識別機(jī)的內(nèi)部到底是什么樣子的?人工智能中的神經(jīng)元網(wǎng)絡(luò)類似于人腦中的生物對應(yīng)物。一個神經(jīng)元有幾個輸入和一個輸出。基本上,這樣的神經(jīng)元只不過是輸入
2023-02-23 20:11:10
語言使用,數(shù)學(xué)庫、數(shù)據(jù)結(jié)構(gòu)及相關(guān)算法,深入學(xué)習(xí)AI算法模型訓(xùn)練、分析,神經(jīng)網(wǎng)絡(luò)、機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等因此,為了幫助大家更好的入門學(xué)習(xí)AI人工智能,包括:Python語法編程、數(shù)據(jù)結(jié)構(gòu)與算法、機(jī)器學(xué)習(xí)
2019-11-27 12:10:39
最近在看人工智能神經(jīng)網(wǎng)絡(luò)存算一體這些方面的ADC設(shè)計(jì)方向,貌似跟一般的ADC方向是一樣的,都是希望朝著低功耗高精度和高速發(fā)展,在這幾個或其他特殊的方向各位有什么見解呢?
2021-06-24 08:17:34
最近在學(xué)習(xí)電機(jī)的智能控制,上周學(xué)習(xí)了基于單神經(jīng)元的PID控制,這周研究基于BP神經(jīng)網(wǎng)絡(luò)的PID控制。神經(jīng)網(wǎng)絡(luò)具有任意非線性表達(dá)能力,可以通過對系統(tǒng)性能的學(xué)習(xí)來實(shí)現(xiàn)具有最佳組合的PID控制。利用BP
2021-09-07 07:43:47
本用戶手冊指導(dǎo)了基于 IDE 逐步構(gòu)建用于 STM32 微處理器的完整人工智能(AI)項(xiàng)目,自動轉(zhuǎn)換預(yù)訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)(NN)并集成所生成的優(yōu)化庫。本手冊還介紹了 X-CUBE-AI 擴(kuò)展包,該擴(kuò)展
2023-09-07 06:15:31
基于光學(xué)芯片的神經(jīng)網(wǎng)絡(luò)訓(xùn)練解析,不看肯定后悔
2021-06-21 06:33:55
作者:Nagesh Gupta 創(chuàng)始人兼 CEOAuviz Systems Nagesh@auvizsystems.com憑借出色的性能和功耗指標(biāo),賽靈思 FPGA 成為設(shè)計(jì)人員構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)
2019-06-19 07:24:41
巡線智能車控制中的CNN網(wǎng)絡(luò)有何應(yīng)用?嵌入式單片機(jī)中的神經(jīng)網(wǎng)絡(luò)該怎樣去使用?如何利用卷積神經(jīng)網(wǎng)絡(luò)去更好地控制巡線智能車呢?
2021-12-21 07:47:24
如何用stm32cube.ai簡化人工神經(jīng)網(wǎng)絡(luò)映射?如何使用stm32cube.ai部署神經(jīng)網(wǎng)絡(luò)?
2021-10-11 08:05:42
已經(jīng)有很多關(guān)于將人工智能用于日益智能的車輛的文章。但是,您如何將在服務(wù)器群上開發(fā)的神經(jīng)網(wǎng)絡(luò) (NN) 壓縮到量產(chǎn)汽車中資源受限的嵌入式硬件中呢?本文探討了我們應(yīng)該如何授權(quán)汽車生產(chǎn) AI 研發(fā)工程師在
2021-12-23 06:30:50
原文鏈接:http://tecdat.cn/?p=5725 神經(jīng)網(wǎng)絡(luò)是一種基于現(xiàn)有數(shù)據(jù)創(chuàng)建預(yù)測的計(jì)算系統(tǒng)。如何構(gòu)建神經(jīng)網(wǎng)絡(luò)?神經(jīng)網(wǎng)絡(luò)包括:輸入層:根據(jù)現(xiàn)有數(shù)據(jù)獲取輸入的層隱藏層:使用反向傳播優(yōu)化輸入變量權(quán)重的層,以提高模型的預(yù)測能力輸出層:基于輸入和隱藏層的數(shù)據(jù)輸出預(yù)測
2021-07-12 08:02:11
人工智能下面有哪些機(jī)器學(xué)習(xí)分支?如何用卷積神經(jīng)網(wǎng)絡(luò)(CNN)方法去解決機(jī)器學(xué)習(xí)監(jiān)督學(xué)習(xí)下面的分類問題?
2021-06-16 08:09:03
神經(jīng)網(wǎng)絡(luò)(Neural Networks)是人工神經(jīng)網(wǎng)絡(luò)(Ar-tificial Neural Networks)的簡稱,是當(dāng)前的研究熱點(diǎn)之一。人腦在接受視覺感官傳來的大量圖像信息后,能迅速做出反應(yīng)
2019-08-08 06:11:30
現(xiàn)有的圖數(shù)據(jù)規(guī)模極大,導(dǎo)致時序圖神經(jīng)網(wǎng)絡(luò)的訓(xùn)練需要格外長的時間,因此使用多GPU進(jìn)行訓(xùn)練變得成為尤為重要,如何有效地將多GPU用于時序圖神經(jīng)網(wǎng)絡(luò)訓(xùn)練成為一個非常重要的研究議題。本文提供了兩種方式來
2022-09-28 10:37:20
人工神經(jīng)網(wǎng)絡(luò)在AI中具有舉足輕重的地位,除了找到最好的神經(jīng)網(wǎng)絡(luò)模型和訓(xùn)練數(shù)據(jù)集之外,人工神經(jīng)網(wǎng)絡(luò)的另一個挑戰(zhàn)是如何在嵌入式設(shè)備上實(shí)現(xiàn)它,同時優(yōu)化性能和功率效率。 使用云計(jì)算并不總是一個選項(xiàng),尤其是當(dāng)
2021-11-09 08:06:27
當(dāng)訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)用于應(yīng)用的時候,權(quán)值是不是不能變了????就是已經(jīng)訓(xùn)練好的神經(jīng)網(wǎng)絡(luò)是不是相當(dāng)于得到一個公式了,權(quán)值不能變了
2016-10-24 21:55:22
][/img]
這項(xiàng)新研究是由微軟人工智能和研究團(tuán)隊(duì)的一組研究人員完成的,目標(biāo)是達(dá)到與一組人類轉(zhuǎn)錄者一樣的準(zhǔn)確度,他們能夠聽他們幾次轉(zhuǎn)錄的內(nèi)容,了解他們的談話內(nèi)容,并與其他轉(zhuǎn)錄員一起工作。
總的來說
2017-08-23 09:18:35
本文提出了一個基于FPGA 的信息處理的實(shí)例:一個簡單的人工神經(jīng)網(wǎng)絡(luò)應(yīng)用Verilog 語言描述,該數(shù)據(jù)流采用模塊化的程序設(shè)計(jì),并考慮了模塊間數(shù)據(jù)傳輸信號同 步的問題,有效地解決了人工神經(jīng)網(wǎng)絡(luò)并行數(shù)據(jù)處理的問題。
2021-05-06 07:22:07
有提供編寫神經(jīng)網(wǎng)絡(luò)預(yù)測程序服務(wù)的嗎?
2011-12-10 13:50:46
的這些龐大的數(shù)據(jù)。當(dāng)時AI研究的普遍方向也與他們相反,人們都在尋找捷徑,直接模擬出行為而不是模仿大腦的運(yùn)作。隨著計(jì)算能力的提升和算法的改進(jìn),今天,神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)已經(jīng)成為人工智能領(lǐng)域最具吸引力的流派
2015-12-23 14:21:58
的智能——但是我們已經(jīng)看到了一條充滿潛力的道路。目前人工智能(AI)已經(jīng)發(fā)展為一系列技術(shù):機(jī)器學(xué)習(xí)、深度學(xué)習(xí)、卷積神經(jīng)網(wǎng)絡(luò)(CNN)等,但是無論我們怎么命名,它們都需要組合起來搭建一個更加智能的機(jī)器
2018-05-22 09:54:43
人機(jī)在空中發(fā)生碰撞,機(jī)器人吸塵機(jī)吸掉不該吸的東西。隨著研究人員應(yīng)用專門的神經(jīng)網(wǎng)絡(luò)來幫助機(jī)器識別和理解現(xiàn)實(shí)世界的圖像,機(jī)器視覺在過去幾年取得了巨大的進(jìn)步。如今的計(jì)算機(jī)在視覺識別上能夠做到各種各樣的事情
2015-12-17 17:14:02
嵌入式設(shè)備自帶專用屬性,不適合作為隨機(jī)性很強(qiáng)的人工智能深度學(xué)習(xí)訓(xùn)練平臺。想象用S3C2440訓(xùn)練神經(jīng)網(wǎng)絡(luò)算法都會頭皮發(fā)麻,PC上的I7、GPU上都很吃力,大部分都要依靠服務(wù)器來訓(xùn)練。但是一旦算法訓(xùn)練
2021-08-17 08:51:57
請問用matlab編程進(jìn)行BP神經(jīng)網(wǎng)絡(luò)預(yù)測時,訓(xùn)練結(jié)果很多都是合適的,但如何確定最合適的?且如何用最合適的BP模型進(jìn)行外推預(yù)測?
2014-02-08 14:19:12
信息,擴(kuò)大訓(xùn)練數(shù)據(jù)。 張亞勤認(rèn)為,人工智能的“井噴式”創(chuàng)新,將推動互聯(lián)網(wǎng)進(jìn)入第三幕,并將重構(gòu)傳統(tǒng)產(chǎn)業(yè)。比如“人工智能+金融”,可以快速地實(shí)現(xiàn)征信升級,實(shí)現(xiàn)“秒放”貸款等。
2016-07-01 15:22:41
針對模糊神經(jīng)網(wǎng)絡(luò)訓(xùn)練采用BP算法比較依賴于網(wǎng)絡(luò)的初始條件,訓(xùn)練時間較長,容易陷入局部極值的缺點(diǎn),利用粒子群優(yōu)化算法(PSO)的全局搜索性能,將PSO用于模糊神經(jīng)網(wǎng)絡(luò)的訓(xùn)練過程.由于基本PSO算法存在
2010-05-06 09:05:35
我在matlab中訓(xùn)練好了一個神經(jīng)網(wǎng)絡(luò)模型,想在labview中調(diào)用,請問應(yīng)該怎么做呢?或者labview有自己的神經(jīng)網(wǎng)絡(luò)工具包嗎?
2018-07-05 17:32:32
`就像大多數(shù)軟件應(yīng)用程序的開發(fā)一樣,開發(fā)人員也在使用多種語言來編寫人工智能項(xiàng)目,但是現(xiàn)在還沒有任何一種完美的編程語言是可以完全速配人工智能項(xiàng)目的。編程語言的選擇往往取決于對人工智能應(yīng)用程序的期望功能
2018-09-29 10:27:14
隱藏技術(shù): 一種基于前沿神經(jīng)網(wǎng)絡(luò)理論的新型人工智能處理器 Copy東京理工大學(xué)的研究人員開發(fā)了一種名為“ Hiddenite”的新型加速器芯片,該芯片可以在計(jì)算稀疏“隱藏神經(jīng)網(wǎng)絡(luò)”時達(dá)到最高的精度
2022-03-17 19:15:13
本文以神經(jīng)網(wǎng)絡(luò)為工具,以電動執(zhí)行器為研究對象,提出基于自組織競爭型神經(jīng)網(wǎng)絡(luò)的電動執(zhí)行器診斷方法,利用該網(wǎng)絡(luò)的非線性動態(tài)系統(tǒng)辨識能力,通過比較系統(tǒng)預(yù)測值和實(shí)際參
2009-09-25 16:27:549 運(yùn)用人工神經(jīng)網(wǎng)絡(luò)原理建立了羅茨增壓器性能預(yù)測的BP 神經(jīng)網(wǎng)絡(luò)模型,并利用該模型對羅茨增壓器不同壓比條件下的溫升、轉(zhuǎn)速與流量的特性關(guān)系進(jìn)行了預(yù)測分析,取得了良好的
2009-12-14 14:04:4111 隨著人工智能的迅速發(fā)展,客流量統(tǒng)計(jì)攝像機(jī) 成為了商場、車站、機(jī)場等公共場所的重要設(shè)備。監(jiān)測攝像機(jī)利用人工智能算法能夠準(zhǔn)確地統(tǒng)計(jì)出人流的數(shù)量,并且還可以根據(jù)不同的特征為每個人群打造個性化的標(biāo)簽。
2023-12-11 17:24:43
人工神經(jīng)網(wǎng)絡(luò),人工神經(jīng)網(wǎng)絡(luò)是什么意思
神經(jīng)網(wǎng)絡(luò)是一門活躍的邊緣性交叉學(xué)科.研究它的發(fā)展過程和前沿問題,具有重要的理論意義
2010-03-06 13:39:013296 本書系統(tǒng)的介紹了人工神經(jīng)網(wǎng)絡(luò)典型模型的原理、算法,并對遺傳算法的基本原理也做了簡單介紹。 人工神經(jīng)網(wǎng)絡(luò)方法已應(yīng)用于許多領(lǐng)域。本書是以應(yīng)用為主要目的為從事人工智能、信息處理研究的科技人員及研究生、本科生等編寫的教材。
2011-02-17 17:46:04146 為了提高徑向基函數(shù)RBF神經(jīng)網(wǎng)絡(luò)預(yù)測模型對短時交通流的預(yù)測準(zhǔn)確性,提出了一種基于改進(jìn)人工蜂群算法優(yōu)化RBF神經(jīng)網(wǎng)絡(luò)的短時交通流預(yù)測模型。利用改進(jìn)人工蜂群算法確定RBF網(wǎng)絡(luò)隱含層的中心值以及隱含層單元
2017-12-01 16:31:582 華盛頓大學(xué)的研究人員正在用GoPro攝像機(jī)訓(xùn)練人工智能神經(jīng)網(wǎng)絡(luò)執(zhí)行預(yù)測功能。
2018-04-26 14:32:0714941 人工智能機(jī)器學(xué)習(xí)有關(guān)算法內(nèi)容,人工智能之機(jī)器學(xué)習(xí)主要有三大類:1)分類;2)回歸;3)聚類。今天我們重點(diǎn)探討一下卷積神經(jīng)網(wǎng)絡(luò)(CNN)算法。 前言: 人工智能 機(jī)器學(xué)習(xí)有關(guān)算法內(nèi)容,請參見公眾
2018-06-18 10:15:004809 據(jù)報(bào)道,美國斯坦福大學(xué)的研究人員已經(jīng)證明,可以直接在光學(xué)芯片上訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)。這一重大突破表明,光學(xué)電路可以實(shí)現(xiàn)基于電子的人工神經(jīng)網(wǎng)絡(luò)的關(guān)鍵功能,進(jìn)而可以以更便宜、更快速和更節(jié)能的方式執(zhí)行語音識別、圖像識別等復(fù)雜任務(wù)。
2018-07-30 17:01:003178 研究人員借助人工智能(AI)可以基本確定被觀察對象是否屬于神經(jīng)質(zhì)、友好、外向、認(rèn)真和好奇等性格特征。
2018-08-23 17:39:132662 艾倫人工智能研究所和華盛頓大學(xué)的研究人員正在使用可以根據(jù)上下文來確定英文單詞含義的神經(jīng)網(wǎng)絡(luò)。
2018-09-12 15:52:142014 什么是人工智能神經(jīng)網(wǎng)絡(luò),大腦的結(jié)構(gòu)越簡單,那么智商就越低。單細(xì)胞生物是智商最低的了。人工神經(jīng)網(wǎng)絡(luò)也是一樣的,網(wǎng)絡(luò)越復(fù)雜它就越強(qiáng)大,所以我們需要深度神經(jīng)網(wǎng)絡(luò)。這里的深度是指層數(shù)多,層數(shù)越多那么構(gòu)造的神經(jīng)網(wǎng)絡(luò)就越復(fù)雜。
2019-07-04 11:30:243713 當(dāng)前,人工智能技術(shù)已經(jīng)被應(yīng)用于監(jiān)控攝像頭中,出現(xiàn)在交通、安防、零售、社區(qū)等多個場景。而對抗性樣本有可能欺騙神經(jīng)網(wǎng)絡(luò),導(dǎo)致其產(chǎn)生錯誤的輸出。 近日,來自比利時魯汶大學(xué)的研究人員,在預(yù)印本平臺
2019-05-09 15:10:221199 谷歌的研究人員正試圖開發(fā)一種神經(jīng)網(wǎng)絡(luò),幫助人工智能識別分子的氣味特征。
2019-10-25 15:51:28866 深度神經(jīng)網(wǎng)絡(luò)(DNNs)是一種利用訓(xùn)練數(shù)據(jù)學(xué)習(xí)的機(jī)器學(xué)習(xí)形式,一旦數(shù)據(jù)接受訓(xùn)練,即可在獲取新信息或輸入信息時做出預(yù)測;但如果新的信息超出訓(xùn)練范圍,則很容易做出虛假判斷。
2020-04-03 14:18:48741 研究人員通過一種特殊的神經(jīng)網(wǎng)絡(luò)模型,它以“基本塊”(計(jì)算指令的基本摘要)形式訓(xùn)練標(biāo)記的數(shù)據(jù),以自動預(yù)測其持續(xù)時間使用給定的芯片執(zhí)行以前看不見的基本塊。結(jié)果表明,這種神經(jīng)網(wǎng)絡(luò)模型的性能要比傳統(tǒng)的手動調(diào)整模型精確得多。
2020-04-15 16:42:451658 談及人工智能,就會涉及到人工神經(jīng)網(wǎng)絡(luò)。人工神經(jīng)網(wǎng)絡(luò)是現(xiàn)代人工智能的重要分支,它是一個為人工智能提供動力,可以模仿動物神經(jīng)網(wǎng)絡(luò)行為特征,進(jìn)行分布式并行信息處理的系統(tǒng)。
2020-07-27 10:25:37683 設(shè)計(jì)出了一種具有重大改進(jìn)的“液態(tài)”神經(jīng)網(wǎng)絡(luò)。其特點(diǎn)是能夠在投入訓(xùn)練階段之后,極大地?cái)U(kuò)展 AI 技術(shù)的靈活性。 通常情況下,研究人員會在訓(xùn)練階段向神經(jīng)網(wǎng)絡(luò)算法提供大量相關(guān)的目標(biāo)數(shù)據(jù),來磨煉其推理能力。 期間通過對正確的響應(yīng)加以獎勵,以優(yōu)化其性能。然
2021-01-29 10:46:331330 過去十年,人工智能研究主要集中在探索深度神經(jīng)網(wǎng)絡(luò)的潛力。我們近年來看到的進(jìn)步至少可以部分歸因于網(wǎng)絡(luò)規(guī)模的不斷擴(kuò)大。從使用GPT-3[1]的文本生成到使用Imagen[2]的圖像生成,研究人員付出
2022-11-02 17:16:21250 人工神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別? 人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network, ANN)是一種模仿人腦神經(jīng)元網(wǎng)絡(luò)結(jié)構(gòu)和功能的計(jì)算模型,也被稱為神經(jīng)網(wǎng)絡(luò)(Neural
2023-08-22 16:45:182941
評論
查看更多