在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示
創(chuàng)作
電子發(fā)燒友網(wǎng)>電子資料下載>IC datasheet pdf>SN54LVT8986,SN74LVT8986,pdf(3.

SN54LVT8986,SN74LVT8986,pdf(3.

2010-08-18 | rar | 869 | 次下載 | 2積分

資料介紹

The 'LVT8986 linking addressable scan ports (LASPs) are members of the TI family of IEEE Std 1149.1 (JTAG) scan-support products. The scan-support product family facilitates testing of fully boundary-scannable devices. The LASP applies linking shadow protocols through the test access port (TAP) to extend scan access to the system level and divide scan chains at the board level.

The LASP consists of a primary TAP for interfacing to the backplane IEEE Std 1149.1 serial-bus signals (PTDI, PTMS, PTCK, PTDO, PRTST) and three secondary TAPs for interfacing to the board-level IEEE Std 1149.1 serial-bus signals. Each secondary TAP consists of signals STDIx, STMSx, STCKx, STDOx, and STRSTx. Conceptually, the LASP is a gateway device that can be used to connect a set of primary TAP signals to a set of secondary TAP signals — for example, to interface backplane TAP signals to a board-level TAP. The LASP provides all signal buffering that might be required at these two interfaces. Primary-to-secondary TAP connections can be configured with the help of linking shadow protocol or protocol bypass (BYP5-BYP0) inputs.

Most operations of the LASP are synchronous to the primary test clock (PTCK) input. PTCK always is buffered directly onto the secondary test clock (STCK2-STCK0) outputs. Upon power up of the device, the LASP assumes a condition in which the primary TAP is disconnected from the secondary TAPs (unless the bypass signals are used, as shown in Function Tables 1 and 2). This reset condition also can be entered by asserting the primary test reset (PTRST) input or by using the linking shadow protocol. PTRST always is buffered directly onto the secondary test reset (STRST2-STRST0) outputs, ensuring that the LASP and its associated secondary TAPs can be reset simultaneously. The primary test data output (PTDO) can be configured to receive secondary test data inputs (STDI2-STDI0). Secondary test data outputs (STDO2-STDO0) can be configured to receive either the primary test data input (PTDI), STDI2-STDI0, or the cascade test data input (CTDI). Cascade test data output (CTDO) can be configured to receive either of STDI2-STDI0, or CTDI. CTDI and CTDO facilitate cascading multiple LASPs, which is explained in the latter part of this section. Similarly, secondary test-mode select (STMS2-STMS0) outputs can be configured to receive the primary test-mode select (PTMS) input. When any secondary TAP is disconnected, its respective STDO is at high impedance. Upon disconnecting the secondary TAP, the corresponding STMS holds its last low or high level, allowing the secondary TAP to be held in its last stable state.

The address (A9-A0) inputs to the LASP are used to identify the LASP. The position (P2-P0) inputs to the LASP are used to identify the position of the LASP within a cascade chain when multiple LASPs are cascaded. Up to 8 LASPs can be cascaded to link a maximum of 24 secondary scan paths to 1 primary scan path.

In a system, primary-to-secondary connection is based on linking shadow protocols that are received and acknowledged on PTDI and PTDO, respectively. These protocols can occur in any of the stable TAP states, other than Shift-DR or Shift-IR (i.e., Test-Logic-Reset, Run-Test/Idle, Pause-DR or Pause-IR). The essential nature of the protocols is to receive/transmit an address, position the LASP in the cascade chain that is being configured, and configuration of secondary TAPs via a serial bit-pair signaling scheme. When address and position bits received serially at PTDI match those at the parallel address (A9-A0) inputs and position (P2-P0) inputs respectively, the secondary TAPs are configured per the configuration bits received during the linking shadow protocol, then LASP serially retransmits the entire linking shadow protocol as an acknowledgment and assumes the connected (ON) status. If the received address or position does not match that at the address (A9-A0) inputs or position (P2-P0) inputs, the LASP immediately assumes the disconnected (OFF) status, without acknowledgment.

The LASP also supports three dedicated addresses that can be received globally (that is, to which all LASPs respond) during shadow protocols. Receipt of the dedicated disconnect address (DSA) causes the LASP to disconnect in the same fashion as a nonmatching address. Reservation of this address for global use ensures that at least one address is available to disconnect all receiving LASPs. The DSA is especially useful when the secondary TAPs of multiple LASPs are to be left in different stable states. Receipt of the reset address (RSA) causes the LASP to assume the reset condition. Receipt of the test-synchronization address (TSA) causes the LASP to assume a connect status (MULTICAST) in which PTDO is at high impedance, but the configuration of the secondary TAPs are maintained to allow simultaneous operation of the secondary TAPs of multiple LASPs. This is useful for multicast TAP-state movement, simultaneous test operation, such as in Run-Test/Idle state, and scanning of common test data into multiple like scan chains. The MULTICAST status may also be useful for concurrent in-system programming (ISP) of common modules. The TSA is valid only when received in the Pause-DR or Pause-IR TAP states. Refer to Table 9 for different address mapping.

Alternatively, primary-to-secondary connection can be selected by asserting a low level at the bypass (BYP5) input. The remaining bypass (BYP4-BYP0) inputs are used for configuring the secondary TAPs. This operation is asynchronous to PTCK and is independent of PTRST and/or power-up reset. This bypassing feature is especially useful in the board-test environment because it allows board-level automated test equipment (ATE) to treat the LASP as a simple transceiver. When BYP5 is high, the LASP is free to respond to linking shadow protocols. Otherwise, when BYP5 is low, linking shadow protocols are ignored. Whether the connected status is achieved by use of linking shadow protocol or by use of bypass inputs, this status is indicated by a low level at the connect (CON2-CON0) outputs. Likewise, when the secondary TAP is disconnected from the primary TAP, the corresponding CON output is high. Each secondary TAP has a pass-through input and output consisting of SX2-SX0 and SY2-SY0, respectively. Similarly, the primary TAP also has a pass-through input and output consisting of PX and PY, respectively. Pass-through input PX drives the SY outputs of the secondary TAPs that are connected to the primary TAP. Disconnected secondary TAPs have their SY outputs at high impedance. Pass-through inputs SY2-SY0 of the connected secondary TAPs are logically ANDed and drive the PY output.

下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評(píng)論

查看更多

下載排行

本周

  1. 1ADI高性能電源管理解決方案
  2. 2.43 MB   |  446次下載  |  免費(fèi)
  3. 2免費(fèi)開(kāi)源CC3D飛控資料(電路圖&PCB源文件、BOM、
  4. 5.67 MB   |  134次下載  |  1 積分
  5. 3基于STM32單片機(jī)智能手環(huán)心率計(jì)步器體溫顯示設(shè)計(jì)
  6. 0.10 MB   |  120次下載  |  免費(fèi)
  7. 4如何正確測(cè)試電源的紋波
  8. 0.36 MB   |  5次下載  |  免費(fèi)
  9. 5550W充電機(jī)原理圖
  10. 0.13 MB   |  2次下載  |  6 積分
  11. 6USB的PD快充協(xié)議電壓誘騙控制器FS312A中文手冊(cè)
  12. 1.51 MB   |  2次下載  |  免費(fèi)
  13. 7USB的PD和OC快充協(xié)議電壓誘騙控制器FS312B中文手冊(cè)
  14. 1.35 MB   |  2次下載  |  免費(fèi)
  15. 8ADI公司串行端口開(kāi)發(fā)和故障排除指南
  16. 343.09KB   |  1次下載  |  免費(fèi)

本月

  1. 1ADI高性能電源管理解決方案
  2. 2.43 MB   |  446次下載  |  免費(fèi)
  3. 2免費(fèi)開(kāi)源CC3D飛控資料(電路圖&PCB源文件、BOM、
  4. 5.67 MB   |  134次下載  |  1 積分
  5. 3基于STM32單片機(jī)智能手環(huán)心率計(jì)步器體溫顯示設(shè)計(jì)
  6. 0.10 MB   |  120次下載  |  免費(fèi)
  7. 4使用單片機(jī)實(shí)現(xiàn)七人表決器的程序和仿真資料免費(fèi)下載
  8. 2.96 MB   |  44次下載  |  免費(fèi)
  9. 53314A函數(shù)發(fā)生器維修手冊(cè)
  10. 16.30 MB   |  31次下載  |  免費(fèi)
  11. 6美的電磁爐維修手冊(cè)大全
  12. 1.56 MB   |  22次下載  |  5 積分
  13. 7感應(yīng)筆電路圖
  14. 0.06 MB   |  10次下載  |  免費(fèi)
  15. 8使用TL431設(shè)計(jì)電源
  16. 0.67 MB   |  8次下載  |  免費(fèi)

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935119次下載  |  10 積分
  3. 2開(kāi)源硬件-PMP21529.1-4 開(kāi)關(guān)降壓/升壓雙向直流/直流轉(zhuǎn)換器 PCB layout 設(shè)計(jì)
  4. 1.48MB  |  420062次下載  |  10 積分
  5. 3Altium DXP2002下載入口
  6. 未知  |  233084次下載  |  10 積分
  7. 4電路仿真軟件multisim 10.0免費(fèi)下載
  8. 340992  |  191367次下載  |  10 積分
  9. 5十天學(xué)會(huì)AVR單片機(jī)與C語(yǔ)言視頻教程 下載
  10. 158M  |  183335次下載  |  10 積分
  11. 6labview8.5下載
  12. 未知  |  81581次下載  |  10 積分
  13. 7Keil工具M(jìn)DK-Arm免費(fèi)下載
  14. 0.02 MB  |  73807次下載  |  10 積分
  15. 8LabVIEW 8.6下載
  16. 未知  |  65987次下載  |  10 積分
主站蜘蛛池模板: 天天色踪合合| 奇米奇米| 国产精品免费看久久久香蕉| 色多多在线观看| 狠狠狠色丁香婷婷综合激情| 91大神在线看| 2014天堂| 特级做a爰片毛片免费看一区| 黄乱色伦| 国产九色在线| 亚洲美国avcom| 国产最好的精华液网站| 九九九精品| 一区二区三区四区电影| 天天躁天天狠天天透| 色www永久免费视频| 综合六月| 国产―笫一页―浮力影院xyz | 黄色国产精品| 午夜视频1000| 日本二区免费一片黄2019| 黄色欧美网站| 亚洲小younv另类| 日本中文字幕在线播放| 色天天干| 六月婷婷激情综合| 99久久国产免费中文无字幕| 免费在线观看的视频| 激情春色网| 午夜色网| 丁香六月欧美| 2018天天操天天干| 亚洲午夜大片| 日本天堂影院| 四虎必出精品亚洲高清| 亚洲入口| 就要干就要操| 9999毛片免费看| 六月丁香婷婷网| 蜜月mv国产精品| 天堂网a|