在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示
創(chuàng)作
電子發(fā)燒友網(wǎng)>電子資料下載>電子資料>PyTorch教程4.2之圖像分類數(shù)據(jù)集

PyTorch教程4.2之圖像分類數(shù)據(jù)集

2023-06-05 | pdf | 0.22 MB | 次下載 | 免費

資料介紹

廣泛用于圖像分類的數(shù)據(jù)集之一是手寫數(shù)字的MNIST 數(shù)據(jù)集 LeCun等人,1998 年) 。在 1990 年代發(fā)布時,它對大多數(shù)機器學習算法提出了巨大挑戰(zhàn),其中包含 60,000 張圖像 28×28像素分辨率(加上 10,000 張圖像的測試數(shù)據(jù)集)。客觀地說,在 1995 年,配備高達 64MB RAM 和驚人的 5 MFLOPs 的 Sun SPARCStation 5 被認為是 AT&T 貝爾實驗室最先進的機器學習設備。實現(xiàn)數(shù)字識別的高精度是一個1990 年代 USPS 自動分揀信件的關鍵組件。深度網(wǎng)絡,如 LeNet-5 LeCun等人,1995 年、具有不變性的支持向量機 Sch?lkopf等人,1996 年和切線距離分類器 Simard等人,1998 年都允許達到 1% 以下的錯誤率。

十多年來,MNIST 一直是比較機器學習算法的參考點雖然它作為基準數(shù)據(jù)集運行良好,但即使是按照當今標準的簡單模型也能達到 95% 以上的分類準確率,這使得它不適合區(qū)分強模型和弱模型。更重要的是,數(shù)據(jù)集允許非常高的準確性,這在許多分類問題中通常是看不到的。這種算法的發(fā)展偏向于可以利用干凈數(shù)據(jù)集的特定算法系列,例如活動集方法和邊界搜索活動集算法。今天,MNIST 更像是一種健全性檢查,而不是基準。ImageNet ( Deng et al. , 2009 )提出了一個更相關的挑戰(zhàn)。不幸的是,對于本書中的許多示例和插圖來說,ImageNet 太大了,因為訓練這些示例需要很長時間才能使示例具有交互性。作為替代,我們將在接下來的部分中重點討論定性相似但規(guī)模小得多的 Fashion-MNIST 數(shù)據(jù)集Xiao等人,2017 年,該數(shù)據(jù)集于 2017 年發(fā)布。它包含 10 類服裝的圖像 28×28像素分辨率。

%matplotlib inline
import time
import torch
import torchvision
from torchvision import transforms
from d2l import torch as d2l

d2l.use_svg_display()
%matplotlib inline
import time
from mxnet import gluon, npx
from mxnet.gluon.data.vision import transforms
from d2l import mxnet as d2l

npx.set_np()

d2l.use_svg_display()
%matplotlib inline
import time
import jax
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
from jax import numpy as jnp
from d2l import jax as d2l

d2l.use_svg_display()
No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
%matplotlib inline
import time
import tensorflow as tf
from d2l import tensorflow as d2l

d2l.use_svg_display()

4.2.1. 加載數(shù)據(jù)集

由于它是一個經(jīng)常使用的數(shù)據(jù)集,所有主要框架都提供了它的預處理版本。我們可以使用內(nèi)置的框架實用程序?qū)?Fashion-MNIST 數(shù)據(jù)集下載并讀取到內(nèi)存中。

class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    trans = transforms.Compose([transforms.Resize(resize),
                  transforms.ToTensor()])
    self.train = torchvision.datasets.FashionMNIST(
      root=self.root, train=True, transform=trans, download=True)
    self.val = torchvision.datasets.FashionMNIST(
      root=self.root, train=False, transform=trans, download=True)
class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    trans = transforms.Compose([transforms.Resize(resize),
                  transforms.ToTensor()])
    self.train = gluon.data.vision.FashionMNIST(
      train=True).transform_first(trans)
    self.val = gluon.data.vision.FashionMNIST(
      train=False).transform_first(trans)
class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    self.train, self.val = tf.keras.datasets.fashion_mnist.load_data()
class FashionMNIST(d2l.DataModule): #@save
  """The Fashion-MNIST dataset."""
  def __init__(self, batch_size=64, resize=(28, 28)):
    super().__init__()
    self.save_hyperparameters()
    self.train, self.val = tf.keras.datasets.fashion_mnist.load_data()

Fashion-MNIST 包含來自 10 個類別的圖像,每個類別在訓練數(shù)據(jù)集中由 6,000 個圖像表示,在測試數(shù)據(jù)集中由 1,000 個圖像表示。測試 數(shù)據(jù)集用于評估模型性能(不得用于訓練)。因此,訓練集和測試集分別包含 60,000 和 10,000 張圖像。

data = FashionMNIST(resize=(32, 32))
len(data.train), len(data.val)
(60000, 10000)
data = FashionMNIST(resize=(32, 32))
len(data.train), len(data.val)
(60000, 10000)
data = FashionMNIST(resize=(32, 32))
len(data.train[0]), len(data.val[0])
(60000, 10000)
data = FashionMNIST(resize=(32, 32))
len(data.train[0]), len(data.val[0])
(60000, 10000)

圖像是灰度和放大到32×32分辨率以上的像素。這類似于由(二進制)黑白圖像組成的原始 MNIST 數(shù)據(jù)集。但請注意,大多數(shù)具有 3 個通道(紅色、綠色、藍色)的現(xiàn)代圖像數(shù)據(jù)和超過 100 個通道的高光譜圖像(HyMap 傳感器有 126 個通道)。按照慣例,我們將圖像存儲為 c×h×w張量,其中c是顏色通道數(shù),h是高度和w是寬度。

data.train[0][0].shape
torch.Size([1, 32, 32])
data.train[0][0].shape
(1, 32, 32)
data.train[0][0].shape
(28, 28)
data.train[0

下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1山景DSP芯片AP8248A2數(shù)據(jù)手冊
  2. 1.06 MB  |  532次下載  |  免費
  3. 2RK3399完整板原理圖(支持平板,盒子VR)
  4. 3.28 MB  |  339次下載  |  免費
  5. 3TC358743XBG評估板參考手冊
  6. 1.36 MB  |  330次下載  |  免費
  7. 4DFM軟件使用教程
  8. 0.84 MB  |  295次下載  |  免費
  9. 5元宇宙深度解析—未來的未來-風口還是泡沫
  10. 6.40 MB  |  227次下載  |  免費
  11. 6迪文DGUS開發(fā)指南
  12. 31.67 MB  |  194次下載  |  免費
  13. 7元宇宙底層硬件系列報告
  14. 13.42 MB  |  182次下載  |  免費
  15. 8FP5207XR-G1中文應用手冊
  16. 1.09 MB  |  178次下載  |  免費

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234315次下載  |  免費
  3. 2555集成電路應用800例(新編版)
  4. 0.00 MB  |  33566次下載  |  免費
  5. 3接口電路圖大全
  6. 未知  |  30323次下載  |  免費
  7. 4開關電源設計實例指南
  8. 未知  |  21549次下載  |  免費
  9. 5電氣工程師手冊免費下載(新編第二版pdf電子書)
  10. 0.00 MB  |  15349次下載  |  免費
  11. 6數(shù)字電路基礎pdf(下載)
  12. 未知  |  13750次下載  |  免費
  13. 7電子制作實例集錦 下載
  14. 未知  |  8113次下載  |  免費
  15. 8《LED驅(qū)動電路設計》 溫德爾著
  16. 0.00 MB  |  6656次下載  |  免費

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935054次下載  |  免費
  3. 2protel99se軟件下載(可英文版轉中文版)
  4. 78.1 MB  |  537798次下載  |  免費
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420027次下載  |  免費
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234315次下載  |  免費
  9. 5Altium DXP2002下載入口
  10. 未知  |  233046次下載  |  免費
  11. 6電路仿真軟件multisim 10.0免費下載
  12. 340992  |  191187次下載  |  免費
  13. 7十天學會AVR單片機與C語言視頻教程 下載
  14. 158M  |  183279次下載  |  免費
  15. 8proe5.0野火版下載(中文版免費下載)
  16. 未知  |  138040次下載  |  免費
主站蜘蛛池模板: 欧美日韩一区二区视频图片| 国产老师的丝袜在线看| 成 人 免 费 黄 色| 国产综合在线视频| 国产在线精品一区免费香蕉| 欧美三级免费观看| 手机看片精品国产福利盒子| 亚洲一区二区在线免费观看| 日日夜夜噜| www.色老头.com| 好大好硬好爽免费视频| 色中色官网| 午夜一级福利| 男女视频在线观看免费| 免费毛片网站| 九九精品在线观看| 性在线视频| www.avtt天堂网| 中文字幕一二三四区2021| 日本午夜大片免费观看视频| 天天爽天天爽天天片a久久网| 爽a中文字幕一区| 久久婷婷六月| 成人综合在线视频| 四虎最新视频| 天天干夜夜骑| 在线成人看片| freesexvideo性欧美tv| 一级毛片西西人体44rt高清| 欧美三级在线免费观看| 欧美成人免费草草影院| 亚洲三级在线| 在线视频 亚洲| 黄视频在线免费看| 国产精品漂亮美女在线观看| 黄色网在线| 久久美女性网| dy888午夜秋霞影院不卡| 欧美一级片观看| 国产爽视频| 日本视频www|