在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
創作
電子發燒友網>電子資料下載>電子資料>PyTorch教程之從零開始的遞歸神經網絡實現

PyTorch教程之從零開始的遞歸神經網絡實現

2023-06-05 | pdf | 0.36 MB | 次下載 | 免費

資料介紹

我們現在準備好從頭開始實施 RNN。特別是,我們將訓練此 RNN 作為字符級語言模型(參見 第 9.4 節),并按照第 9.2 節中概述的數據處理步驟,在由 HG Wells 的《時間機器》的整個文本組成的語料庫上對其進行訓練. 我們首先加載數據集。

%matplotlib inline
import math
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
%matplotlib inline
import math
from mxnet import autograd, gluon, np, npx
from d2l import mxnet as d2l

npx.set_np()
%matplotlib inline
import math
import jax
from flax import linen as nn
from jax import numpy as jnp
from d2l import jax as d2l
%matplotlib inline
import math
import tensorflow as tf
from d2l import tensorflow as d2l

9.5.1. 循環神經網絡模型

我們首先定義一個類來實現 RNN 模型(第 9.4.2 節)。請注意,隱藏單元的數量num_hiddens是一個可調的超參數。

class RNNScratch(d2l.Module): #@save
  """The RNN model implemented from scratch."""
  def __init__(self, num_inputs, num_hiddens, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W_xh = nn.Parameter(
      torch.randn(num_inputs, num_hiddens) * sigma)
    self.W_hh = nn.Parameter(
      torch.randn(num_hiddens, num_hiddens) * sigma)
    self.b_h = nn.Parameter(torch.zeros(num_hiddens))
class RNNScratch(d2l.Module): #@save
  """The RNN model implemented from scratch."""
  def __init__(self, num_inputs, num_hiddens, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W_xh = np.random.randn(num_inputs, num_hiddens) * sigma
    self.W_hh = np.random.randn(
      num_hiddens, num_hiddens) * sigma
    self.b_h = np.zeros(num_hiddens)
class RNNScratch(nn.Module): #@save
  """The RNN model implemented from scratch."""
  num_inputs: int
  num_hiddens: int
  sigma: float = 0.01

  def setup(self):
    self.W_xh = self.param('W_xh', nn.initializers.normal(self.sigma),
                (self.num_inputs, self.num_hiddens))
    self.W_hh = self.param('W_hh', nn.initializers.normal(self.sigma),
                (self.num_hiddens, self.num_hiddens))
    self.b_h = self.param('b_h', nn.initializers.zeros, (self.num_hiddens))
class RNNScratch(d2l.Module): #@save
  """The RNN model implemented from scratch."""
  def __init__(self, num_inputs, num_hiddens, sigma=0.01):
    super().__init__()
    self.save_hyperparameters()
    self.W_xh = tf.Variable(tf.random.normal(
      (num_inputs, num_hiddens)) * sigma)
    self.W_hh = tf.Variable(tf.random.normal(
      (num_hiddens, num_hiddens)) * sigma)
    self.b_h = tf.Variable(tf.zeros(num_hiddens))

下面的方法forward定義了如何計算任何時間步的輸出和隱藏狀態,給定當前輸入和模型在前一個時間步的狀態。請注意,RNN 模型循環遍歷 的最外層維度inputs,一次更新隱藏狀態。這里的模型使用了tanh激活函數(第 5.1.2.3 節)。

@d2l.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):
  if state is None:
    # Initial state with shape: (batch_size, num_hiddens)
    state = torch.zeros((inputs.shape[1], self.num_hiddens),
             device=inputs.device)
  else:
    state, = state
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = torch.tanh(torch.matmul(X, self.W_xh) +
             torch.matmul(state, self.W_hh) + self.b_h)
    outputs.append(state)
  return outputs, state
@d2l.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):
  if state is None:
    # Initial state with shape: (batch_size, num_hiddens)
    state = np.zeros((inputs.shape[1], self.num_hiddens),
             ctx=inputs.ctx)
  else:
    state, = state
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = np.tanh(np.dot(X, self.W_xh) +
             np.dot(state, self.W_hh) + self.b_h)
    outputs.append(state)
  return outputs, state
@d2l.add_to_class(RNNScratch) #@save
def __call__(self, inputs, state=None):
  if state is not None:
    state, = state
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = jnp.tanh(jnp.matmul(X, self.W_xh) + (
      jnp.matmul(state, self.W_hh) if state is not None else 0)
             + self.b_h)
    outputs.append(state)
  return outputs, state
@d2l.add_to_class(RNNScratch) #@save
def forward(self, inputs, state=None):
  if state is None:
    # Initial state with shape: (batch_size, num_hiddens)
    state = tf.zeros((inputs.shape[1], self.num_hiddens))
  else:
    state, = state
    state = tf.reshape(state, (-1, self.num_hiddens))
  outputs = []
  for X in inputs: # Shape of inputs: (num_steps, batch_size, num_inputs)
    state = tf.tanh(tf.matmul(X, self.W_xh) +
             tf.matmul(state, self.W_hh) + self.b_h)
    outputs.append(state)
  return outputs, state

我們可以將一小批輸入序列輸入 RNN 模型,如下所示。

batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)
X = torch.ones((num_steps, batch_size, num_inputs))
outputs, state = rnn(X)
batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)
X = np.ones((num_steps, batch_size, num_inputs))
outputs, state = rnn(X)
batch_size, num_inputs, num_hiddens, num_steps = 2, 16, 32, 100
rnn = RNNScratch(num_inputs, num_hiddens)
X = jnp.ones((num_steps, batch_size, num_inputs))
(output
下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1使用單片機實現七人表決器的程序和仿真資料免費下載
  2. 2.96 MB   |  44次下載  |  免費
  3. 2聯想E46L DAOLL6筆記本電腦圖紙
  4. 1.10 MB   |  2次下載  |  5 積分
  5. 3MATLAB繪圖合集
  6. 27.12 MB   |  2次下載  |  5 積分
  7. 4PR735,使用UCC28060的600W交錯式PFC轉換器
  8. 540.03KB   |  1次下載  |  免費
  9. 5UCC38C42 30W同步降壓轉換器參考設計
  10. 428.07KB   |  1次下載  |  免費
  11. 6DV2004S1/ES1/HS1快速充電開發系統
  12. 2.08MB   |  1次下載  |  免費
  13. 7模態分解合集matlab代碼
  14. 3.03 MB   |  1次下載  |  2 積分
  15. 8美的電磁爐維修手冊大全
  16. 1.56 MB   |  1次下載  |  5 積分

本月

  1. 1使用單片機實現七人表決器的程序和仿真資料免費下載
  2. 2.96 MB   |  44次下載  |  免費
  3. 2UC3842/3/4/5電源管理芯片中文手冊
  4. 1.75 MB   |  15次下載  |  免費
  5. 3DMT0660數字萬用表產品說明書
  6. 0.70 MB   |  13次下載  |  免費
  7. 4TPS54202H降壓轉換器評估模塊用戶指南
  8. 1.02MB   |  8次下載  |  免費
  9. 5STM32F101x8/STM32F101xB手冊
  10. 1.69 MB   |  8次下載  |  1 積分
  11. 6HY12P65/HY12P66數字萬用表芯片規格書
  12. 0.69 MB   |  6次下載  |  免費
  13. 7華瑞昇CR216芯片數字萬用表規格書附原理圖及校正流程方法
  14. 0.74 MB   |  6次下載  |  3 積分
  15. 8華瑞昇CR215芯片數字萬用表原理圖
  16. 0.21 MB   |  5次下載  |  3 積分

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935119次下載  |  10 積分
  3. 2開源硬件-PMP21529.1-4 開關降壓/升壓雙向直流/直流轉換器 PCB layout 設計
  4. 1.48MB  |  420061次下載  |  10 積分
  5. 3Altium DXP2002下載入口
  6. 未知  |  233084次下載  |  10 積分
  7. 4電路仿真軟件multisim 10.0免費下載
  8. 340992  |  191367次下載  |  10 積分
  9. 5十天學會AVR單片機與C語言視頻教程 下載
  10. 158M  |  183335次下載  |  10 積分
  11. 6labview8.5下載
  12. 未知  |  81581次下載  |  10 積分
  13. 7Keil工具MDK-Arm免費下載
  14. 0.02 MB  |  73807次下載  |  10 積分
  15. 8LabVIEW 8.6下載
  16. 未知  |  65987次下載  |  10 積分
主站蜘蛛池模板: 日韩二级| 国内真实实拍伦视频在线观看| 日韩怡红院| 国产三区视频| 午夜视频观看| 理论片午午伦夜理片影院99| 国产午夜精品理论片久久影视| 午夜黄| 日本aaaaa特黄毛片| 亚洲色图 在线视频| 22eee在线播放成人免费视频| 日本不卡视频在线| 婷婷激情四射网| 欧美高清一级| 最近免费| 国产精品爽爽影院在线| 亚洲精品一区二区中文| 亚洲欧美色视频| 成人在线综合| 黄黄网| 美女被强插| 奇米影色777四色在线首页| 成人黄色激情网| 黄视频免费在线观看| 亚洲怡红院在线| 毛片你懂的| 天天做天天爱天天爽天天综合| 国产伦精品一区二区三区| 亚洲成人免费观看| 狠狠躁夜夜躁人人躁婷婷视频| 天天综合天天综合色在线| 乱高h亲女| 六月丁香中文字幕| 日本高清视频色| 琪琪see色原在线20| 久久夜色精品国产噜噜| 手机在线看| 精品国产第一页| 噜噜噜色噜噜噜久久| 8090yy理论三级在线观看| 一色屋网站|