在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
創作
電子發燒友網>電子資料下載>電子資料>PyTorch教程14.6之對象檢測數據集

PyTorch教程14.6之對象檢測數據集

2023-06-05 | pdf | 0.32 MB | 次下載 | 免費

資料介紹

目標檢測領域沒有MNIST和Fashion-MNIST這樣的小型數據集。為了快速演示對象檢測模型,我們收集并標記了一個小型數據集。首先,我們從辦公室拍攝了免費香蕉的照片,并生成了 1000 張不同旋轉和大小的香蕉圖像。然后我們將每個香蕉圖像放置在一些背景圖像上的隨機位置。最后,我們為圖像上的那些香蕉標記了邊界框。

14.6.1。下載數據集

帶有所有圖像和 csv 標簽文件的香蕉檢測數據集可以直接從互聯網上下載。

%matplotlib inline
import os
import pandas as pd
import torch
import torchvision
from d2l import torch as d2l

#@save
d2l.DATA_HUB['banana-detection'] = (
  d2l.DATA_URL + 'banana-detection.zip',
  '5de26c8fce5ccdea9f91267273464dc968d20d72')
%matplotlib inline
import os
import pandas as pd
from mxnet import gluon, image, np, npx
from d2l import mxnet as d2l

npx.set_np()

#@save
d2l.DATA_HUB['banana-detection'] = (
  d2l.DATA_URL + 'banana-detection.zip',
  '5de26c8fce5ccdea9f91267273464dc968d20d72')

14.6.2。讀取數據集

我們將在 read_data_bananas下面的函數中讀取香蕉檢測數據集。數據集包括一個 csv 文件,用于對象類標簽和左上角和右下角的地面實況邊界框坐標。

#@save
def read_data_bananas(is_train=True):
  """Read the banana detection dataset images and labels."""
  data_dir = d2l.download_extract('banana-detection')
  csv_fname = os.path.join(data_dir, 'bananas_train' if is_train
               else 'bananas_val', 'label.csv')
  csv_data = pd.read_csv(csv_fname)
  csv_data = csv_data.set_index('img_name')
  images, targets = [], []
  for img_name, target in csv_data.iterrows():
    images.append(torchvision.io.read_image(
      os.path.join(data_dir, 'bananas_train' if is_train else
             'bananas_val', 'images', f'{img_name}')))
    # Here `target` contains (class, upper-left x, upper-left y,
    # lower-right x, lower-right y), where all the images have the same
    # banana class (index 0)
    targets.append(list(target))
  return images, torch.tensor(targets).unsqueeze(1) / 256
#@save
def read_data_bananas(is_train=True):
  """Read the banana detection dataset images and labels."""
  data_dir = d2l.download_extract('banana-detection')
  csv_fname = os.path.join(data_dir, 'bananas_train' if is_train
               else 'bananas_val', 'label.csv')
  csv_data = pd.read_csv(csv_fname)
  csv_data = csv_data.set_index('img_name')
  images, targets = [], []
  for img_name, target in csv_data.iterrows():
    images.append(image.imread(
      os.path.join(data_dir, 'bananas_train' if is_train else
             'bananas_val', 'images', f'{img_name}')))
    # Here `target` contains (class, upper-left x, upper-left y,
    # lower-right x, lower-right y), where all the images have the same
    # banana class (index 0)
    targets.append(list(target))
  return images, np.expand_dims(np.array(targets), 1) / 256

通過使用read_data_bananas函數讀取圖像和標簽,下面的BananasDataset類將允許我們創建一個自定義Dataset實例來加載香蕉檢測數據集。

#@save
class BananasDataset(torch.utils.data.Dataset):
  """A customized dataset to load the banana detection dataset."""
  def __init__(self, is_train):
    self.features, self.labels = read_data_bananas(is_train)
    print('read ' + str(len(self.features)) + (f' training examples' if
       is_train else f' validation examples'))

  def __getitem__(self, idx):
    return (self.features[idx].float(), self.labels[idx])

  def __len__(self):
    return len(self.features)
#@save
class BananasDataset(gluon.data.Dataset):
  """A customized dataset to load the banana detection dataset."""
  def __init__(self, is_train):
    self.features, self.labels = read_data_bananas(is_train)
    print('read ' + str(len(self.features)) + (f' training examples' if
       is_train else f' validation examples'))

  def __getitem__(self, idx):
    return (self.features[idx].astype('float32').transpose(2, 0, 1),
        self.labels[idx])

  def __len__(self):
    return len(self.features)

最后,我們定義load_data_bananas函數為訓練集和測試集返回兩個數據迭代器實例。對于測試數據集,不需要隨機讀取。

#@save
def load_data_bananas(batch_size):
  """Load the banana detection dataset."""
  train_iter = torch.utils.data.DataLoader(BananasDataset(is_train=True),
                       batch_size, shuffle=True)
  val_iter = torch.utils.data.DataLoader(BananasDataset(is_train=False),
                      batch_size)
  return train_iter, val_iter
#@save
def load_data_bananas(batch_size):
  """Load the banana detection dataset."""
  train_iter = gluon.data.DataLoader(BananasDataset(is_train=True),
                    batch_size, shuffle=True)
  val_iter = gluon.data.DataLoader(BananasDataset(is_train=False),
                   batch_size)
  return train_iter, val_iter

讓我們讀取一個 minibatch 并打印這個 minibatch 中圖像和標簽的形狀。圖像小批量的形狀(批量大小、通道數、高度、寬度)看起來很熟悉:它與我們之前的圖像分類任務相同。label minibatch的shape是(batch size,m, 5), 其中m是任何圖像在數據集中具有的最大可能數量的邊界框。

雖然 minibatch 的計算效率更高,但它要求所有圖像示例都包含相同數量的邊界框,以通過連接形成一個 minibatch。通常,圖像可能具有不同數量的邊界框;因此,圖像少于m 邊界框將被非法邊界框填充,直到 m到達了。然后每個邊界框的標簽用一個長度為5的數組表示,數組的第一個元素是邊界框中物體的類,其中-1表示填充的非法邊界框。數組的其余四個元素是 (x,y)-邊界框左上角和右下角的坐標值(范圍在0到1之間)。對于香蕉數據集,由于每張圖像上只有一個邊界框,我們有m=1.

batch_size, edge_size = 32, 256
train_iter, _ = load_data_bananas(batch_size)
batch = next(iter(train_iter))
batch[0].shape, batch[1].shape
read 1000 training examples
read 100 validation examples
(torch.Size([32, 3, 256, 256]), torch.Size([32, 1, 5]))
batch_size, edge_size = 32, 256
train_iter, _ = load_data_bananas(batch_size)
batch = next(iter(train_iter))
batch[0].shape, batch[1].shape
read 1000 training examples
read 100 validation examples
((32, 3, 256, 256), (32, 1, 5))

14.6.3。示范

讓我們演示十張帶有標記的真實邊界框的圖像。我們可以看到香蕉的旋轉、大小和位置在所有這些圖像中都不同。當然,這只是一個簡單的人工數據集。實際上,真實世界的數據集通常要復雜得多。

imgs = (batch[0][:10].permute(0, 2, 3, 1)) / 255
axes = d2l.show_images(imgs, 2, 5, scale=2)
for ax, label in zip(axes, batch[1][:10]):
  d2l.show_bboxes(ax, [label[0

下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1山景DSP芯片AP8248A2數據手冊
  2. 1.06 MB  |  532次下載  |  免費
  3. 2RK3399完整板原理圖(支持平板,盒子VR)
  4. 3.28 MB  |  339次下載  |  免費
  5. 3TC358743XBG評估板參考手冊
  6. 1.36 MB  |  330次下載  |  免費
  7. 4DFM軟件使用教程
  8. 0.84 MB  |  295次下載  |  免費
  9. 5元宇宙深度解析—未來的未來-風口還是泡沫
  10. 6.40 MB  |  227次下載  |  免費
  11. 6迪文DGUS開發指南
  12. 31.67 MB  |  194次下載  |  免費
  13. 7元宇宙底層硬件系列報告
  14. 13.42 MB  |  182次下載  |  免費
  15. 8FP5207XR-G1中文應用手冊
  16. 1.09 MB  |  178次下載  |  免費

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234315次下載  |  免費
  3. 2555集成電路應用800例(新編版)
  4. 0.00 MB  |  33566次下載  |  免費
  5. 3接口電路圖大全
  6. 未知  |  30323次下載  |  免費
  7. 4開關電源設計實例指南
  8. 未知  |  21549次下載  |  免費
  9. 5電氣工程師手冊免費下載(新編第二版pdf電子書)
  10. 0.00 MB  |  15349次下載  |  免費
  11. 6數字電路基礎pdf(下載)
  12. 未知  |  13750次下載  |  免費
  13. 7電子制作實例集錦 下載
  14. 未知  |  8113次下載  |  免費
  15. 8《LED驅動電路設計》 溫德爾著
  16. 0.00 MB  |  6656次下載  |  免費

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935054次下載  |  免費
  3. 2protel99se軟件下載(可英文版轉中文版)
  4. 78.1 MB  |  537798次下載  |  免費
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420027次下載  |  免費
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234315次下載  |  免費
  9. 5Altium DXP2002下載入口
  10. 未知  |  233046次下載  |  免費
  11. 6電路仿真軟件multisim 10.0免費下載
  12. 340992  |  191187次下載  |  免費
  13. 7十天學會AVR單片機與C語言視頻教程 下載
  14. 158M  |  183279次下載  |  免費
  15. 8proe5.0野火版下載(中文版免費下載)
  16. 未知  |  138040次下載  |  免費
主站蜘蛛池模板: 四虎1515hh永久久免费| 亚洲欧美日韩在线精品2021| 在线视频这里只有精品| 欧美性天天影院| 午夜影院免费观看| h在线免费| 三级视频网| 夜夜cao| 欧美大色网| 亚洲国产视频一区| 日韩欧美黄色| 天天影视欧美综合在线观看| 亚洲欧美在线一区二区| 欧美在线视频免费| 国产嫩草影院在线观看| 国产情侣出租屋露脸实拍| 伊人久久成人爱综合网| 国产成人亚洲综合a∨婷婷| 天天插视频| tube 69sex 第一次| 日本午夜片成年www| 午夜禁片| 被啪漫画羞羞漫画| 国内一国产农村妇女一级毛片| 国产在线视频www色| 亚洲成在人线久久综合| 成 人 色综合| 久久精品国产福利| 亚洲国产精品综合久久网络| 99久久综合| 国产黄色片一级| 四虎影院网| 色老板女色狠xx网| 又粗又长又色又爽视频| 男人都懂得网址| 国产成人综合亚洲怡春院| 四虎精品永久在线| 人人做人人干| 婷婷五月五| 大象焦伊人久久综合网色视| 91大神精品|