在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
會員中心
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示
創作
電子發燒友網>電子資料下載>電子資料>PyTorch教程15.7之詞的相似性和類比

PyTorch教程15.7之詞的相似性和類比

2023-06-05 | pdf | 0.10 MB | 次下載 | 免費

資料介紹

15.4 節中,我們在一個小數據集上訓練了一個 word2vec 模型,并將其應用于為輸入詞尋找語義相似的詞。在實踐中,在大型語料庫上預訓練的詞向量可以應用于下游的自然語言處理任務,這將在第 16 節后面介紹為了以直接的方式展示來自大型語料庫的預訓練詞向量的語義,讓我們將它們應用到詞相似度和類比任務中。

import os
import torch
from torch import nn
from d2l import torch as d2l
import os
from mxnet import np, npx
from d2l import mxnet as d2l

npx.set_np()

15.7.1。加載預訓練詞向量

下面列出了維度為 50、100 和 300 的預訓練 GloVe 嵌入,可以從GloVe 網站下載預訓練的 fastText 嵌入有多種語言版本。這里我們考慮一個可以從fastText 網站下載的英文版本(300 維“wiki.en”) 。

#@save
d2l.DATA_HUB['glove.6b.50d'] = (d2l.DATA_URL + 'glove.6B.50d.zip',
                '0b8703943ccdb6eb788e6f091b8946e82231bc4d')

#@save
d2l.DATA_HUB['glove.6b.100d'] = (d2l.DATA_URL + 'glove.6B.100d.zip',
                 'cd43bfb07e44e6f27cbcc7bc9ae3d80284fdaf5a')

#@save
d2l.DATA_HUB['glove.42b.300d'] = (d2l.DATA_URL + 'glove.42B.300d.zip',
                 'b5116e234e9eb9076672cfeabf5469f3eec904fa')

#@save
d2l.DATA_HUB['wiki.en'] = (d2l.DATA_URL + 'wiki.en.zip',
              'c1816da3821ae9f43899be655002f6c723e91b88')
#@save
d2l.DATA_HUB['glove.6b.50d'] = (d2l.DATA_URL + 'glove.6B.50d.zip',
                '0b8703943ccdb6eb788e6f091b8946e82231bc4d')

#@save
d2l.DATA_HUB['glove.6b.100d'] = (d2l.DATA_URL + 'glove.6B.100d.zip',
                 'cd43bfb07e44e6f27cbcc7bc9ae3d80284fdaf5a')

#@save
d2l.DATA_HUB['glove.42b.300d'] = (d2l.DATA_URL + 'glove.42B.300d.zip',
                 'b5116e234e9eb9076672cfeabf5469f3eec904fa')

#@save
d2l.DATA_HUB['wiki.en'] = (d2l.DATA_URL + 'wiki.en.zip',
              'c1816da3821ae9f43899be655002f6c723e91b88')

為了加載這些預訓練的 GloVe 和 fastText 嵌入,我們定義了以下TokenEmbedding類。

#@save
class TokenEmbedding:
  """Token Embedding."""
  def __init__(self, embedding_name):
    self.idx_to_token, self.idx_to_vec = self._load_embedding(
      embedding_name)
    self.unknown_idx = 0
    self.token_to_idx = {token: idx for idx, token in
               enumerate(self.idx_to_token)}

  def _load_embedding(self, embedding_name):
    idx_to_token, idx_to_vec = [''], []
    data_dir = d2l.download_extract(embedding_name)
    # GloVe website: https://nlp.stanford.edu/projects/glove/
    # fastText website: https://fasttext.cc/
    with open(os.path.join(data_dir, 'vec.txt'), 'r') as f:
      for line in f:
        elems = line.rstrip().split(' ')
        token, elems = elems[0], [float(elem) for elem in elems[1:]]
        # Skip header information, such as the top row in fastText
        if len(elems) > 1:
          idx_to_token.append(token)
          idx_to_vec.append(elems)
    idx_to_vec = [[0] * len(idx_to_vec[0])] + idx_to_vec
    return idx_to_token, torch.tensor(idx_to_vec)

  def __getitem__(self, tokens):
    indices = [self.token_to_idx.get(token, self.unknown_idx)
          for token in tokens]
    vecs = self.idx_to_vec[torch.tensor(indices)]
    return vecs

  def __len__(self):
    return len(self.idx_to_token)
#@save
class TokenEmbedding:
  """Token Embedding."""
  def __init__(self, embedding_name):
    self.idx_to_token, self.idx_to_vec = self._load_embedding(
      embedding_name)
    self.unknown_idx = 0
    self.token_to_idx = {token: idx for idx, token in
               enumerate(self.idx_to_token)}

  def _load_embedding(self, embedding_name):
    idx_to_token, idx_to_vec = [''], []
    data_dir = d2l.download_extract(embedding_name)
    # GloVe website: https://nlp.stanford.edu/projects/glove/
    # fastText website: https://fasttext.cc/
    with open(os.path.join(data_dir, 'vec.txt'), 'r') as f:
      for line in f:
        elems = line.rstrip().split(' ')
        token, elems = elems[0], [float(elem) for elem in elems[1:]]
        # Skip header information, such as the top row in fastText
        if len(elems) > 1:
          idx_to_token.append(token)
          idx_to_vec.append(elems)
    idx_to_vec = [[0] * len(idx_to_vec[0])] + idx_to_vec
    return idx_to_token, np.array(idx_to_vec)

  def __getitem__(self, tokens):
    indices = [self.token_to_idx.get(token, self.unknown_idx)
          for token in tokens]
    vecs = self.idx_to_vec[np.array(indices)]
    return vecs

  def __len__(self):
    return len(self.idx_to_token)

下面我們加載 50 維 GloVe 嵌入(在維基百科子集上預訓練)。創建TokenEmbedding實例時,如果尚未下載指定的嵌入文件,則必須下載。

glove_6b50d = TokenEmbedding('glove.6b.50d')
Downloading ../data/glove.6B.50d.zip from http://d2l-data.s3-accelerate.amazonaws.com/glove.6B.50d.zip...
glove_6b50d = TokenEmbedding('glove.6b.50d')
Downloading ../data/glove.6B.50d.zip from http://d2l-data.s3-accelerate.amazonaws.com/glove.6B.50d.zip...

輸出詞匯量。詞匯表包含 400000 個單詞(標記)和一個特殊的未知標記。

len(glove_6b50d)
400001
len(glove_6b50d)
400001

我們可以獲得一個詞在詞匯表中的索引,反之亦然。

glove_6b50d.token_to_idx['beautiful'], glove_6b50d.idx_to_token[3367]
(3367, 'beautiful')
glove_6b50d.token_to_idx['beautiful'], glove_6b50d.idx_to_token[3367]
(3367, 'beautiful')

15.7.2。應用預訓練詞向量

使用加載的 GloVe 向量,我們將通過將它們應用于以下單詞相似性和類比任務來演示它們的語義。

15.7.2.1。詞相似度

第 15.4.3 節類似,為了根據詞向量之間的余弦相似度為輸入詞找到語義相似的詞,我們實現以下knnk-最近的鄰居)功能。

def knn(W, x, k):
  # Add 1e-9 for numerical stability
  cos = torch.mv(W, x.reshape(-1,)) / (
    torch.sqrt(torch.sum(W * W, axis=1) + 1e-9) *
    torch.sqrt((x * x).sum()))
  _, topk = torch.topk(cos, k=k)
  return topk, [cos[int(i)] for i in topk]
def knn(W, x, k):
  # Add 1e-9 for numerical stability
  cos = np.dot(W, x.reshape(-1,)) / (
    np.sqrt(np.sum(W * W, axis=1) + 1e-9) * np

下載該資料的人也在下載 下載該資料的人還在閱讀
更多 >

評論

查看更多

下載排行

本周

  1. 1山景DSP芯片AP8248A2數據手冊
  2. 1.06 MB  |  532次下載  |  免費
  3. 2RK3399完整板原理圖(支持平板,盒子VR)
  4. 3.28 MB  |  339次下載  |  免費
  5. 3TC358743XBG評估板參考手冊
  6. 1.36 MB  |  330次下載  |  免費
  7. 4DFM軟件使用教程
  8. 0.84 MB  |  295次下載  |  免費
  9. 5元宇宙深度解析—未來的未來-風口還是泡沫
  10. 6.40 MB  |  227次下載  |  免費
  11. 6迪文DGUS開發指南
  12. 31.67 MB  |  194次下載  |  免費
  13. 7元宇宙底層硬件系列報告
  14. 13.42 MB  |  182次下載  |  免費
  15. 8FP5207XR-G1中文應用手冊
  16. 1.09 MB  |  178次下載  |  免費

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234315次下載  |  免費
  3. 2555集成電路應用800例(新編版)
  4. 0.00 MB  |  33566次下載  |  免費
  5. 3接口電路圖大全
  6. 未知  |  30323次下載  |  免費
  7. 4開關電源設計實例指南
  8. 未知  |  21549次下載  |  免費
  9. 5電氣工程師手冊免費下載(新編第二版pdf電子書)
  10. 0.00 MB  |  15349次下載  |  免費
  11. 6數字電路基礎pdf(下載)
  12. 未知  |  13750次下載  |  免費
  13. 7電子制作實例集錦 下載
  14. 未知  |  8113次下載  |  免費
  15. 8《LED驅動電路設計》 溫德爾著
  16. 0.00 MB  |  6656次下載  |  免費

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935054次下載  |  免費
  3. 2protel99se軟件下載(可英文版轉中文版)
  4. 78.1 MB  |  537798次下載  |  免費
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420027次下載  |  免費
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234315次下載  |  免費
  9. 5Altium DXP2002下載入口
  10. 未知  |  233046次下載  |  免費
  11. 6電路仿真軟件multisim 10.0免費下載
  12. 340992  |  191187次下載  |  免費
  13. 7十天學會AVR單片機與C語言視頻教程 下載
  14. 158M  |  183279次下載  |  免費
  15. 8proe5.0野火版下載(中文版免費下載)
  16. 未知  |  138040次下載  |  免費
主站蜘蛛池模板: 天天干天天干天天色| 美女bbbb视频| 7777奇米| 亚洲综合激情九月婷婷| 欧美性xxxxxbbbbbb精品| 四虎成人影院网址| bt天堂磁力搜索| 欧美性受视频| 色亚洲欧美| 在线看欧美成人中文字幕视频| 亚洲啪啪| 99热.com| 韩国三级无遮挡床戏视频| 久久天天躁狠狠躁夜夜免费观看 | 欧美日本视频一区| 欧美精品 在线播放| 成年人电影黄色| 视色4setv.com| 日韩免费精品一级毛片| 午夜福免费福利在线观看| 大黄网站在线观看| 九九视频热| 日本黄色生活片| 天天爱夜夜爱| 在线网站你懂| 爱婷婷视频在线观看| xxx日本69hd| 你懂的在线视频播放| 在线视频影院| 热久久最新视频| 国产一卡二卡3卡4卡四卡在线视频| 国产日日夜夜| 日韩欧美一级| 免费看一级黄色录像| 免费网站黄| 欧美a区| 九色亚洲| 三级成人影院| 久久手机看片你懂的日韩1024| 性欧美乱又伦| 天天爱天天做天天爽天天躁|