在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示
創(chuàng)作
電子發(fā)燒友網(wǎng)>電子資料下載>類型>參考設(shè)計>CN0510用戶指南

CN0510用戶指南

2021-03-23 | pdf | 396.74KB | 次下載 | 2積分

資料介紹

This version (27 Jan 2021 22:38) was approved by Robin Getz.The Previously approved version (14 Jan 2021 05:12) is available.Diff

CN0510 User Guide

Overview

The CN0510 circuit is an electrochemical impedance spectroscopy (EIS) measurements system for characterizing Lithium Ion and other types of secondary batteries. EIS is a non-destructive perturbation technique used to examine processes occurring inside electrochemical systems. The system measures the impedance of the battery cell over a range of frequencies. The data can determine the state of health (SOH) and State of Charge (SOC) of a battery. This system is designed to excite and measure a battery’s current, voltage or impedance response utilizing an ultralow power analog front end (AFE) system.

Ageing leads to performance degradation and irreversible changes in the battery’s chemistry. Impedance increases linearly with the decline in capacity. Monitoring the increase in impedance of a battery using EIS can determine the SOH and if the battery needs replacing, resulting in reduced system downtime and lower maintenance costs.

Batteries require a current excitation, not voltage, and the impedance values are small, in the milliohm range. This system includes the necessary circuitry to inject a current into the battery and allows for calibration and sensing of the small impedances found in batteries.

Required Equipment

Documents Needed

Software Needed

Hardware Needed

  • EVAL-ADICUP3029 circuit board.
  • EVAL-AD5941BATZ Battery Measurement Board.
  • PC with a USB port and Windows? 7 (32-bit) or higher.
  • USB type A to USB micro cable.
  • BNC cables.
  • Battery for measurement.

—-

General Setup

Ensure the boards are powered before connecting the battery to avoid a short circuit.

Hardware

  1. Connect the EVAL-AD5941BATZ to the EVAL-ADICUP3029 via the Arduino headers.
  2. Plug in BNC cables.
  3. Power the boards by connecting the micro USB cable into P10 on the EVAL-ADICUP3029 and the other end of the USB cable to your computer.
  4. Connect the battery as shown in figure above.
    • Connect F+ and S+ leads to the positive terminal of the battery.
    • Connect S- and F- to the negative terminal of the battery.Connect red BNC wires of J1 and J2 to the positive terminal of the battery.

Software

  1. Download one of the supported IDE environments IAR Embedded Workbench or Keil.
  2. Download the AD5940 Source Code from GitHub.
    • Note, there is a shared library for the AD5940 and AD5941 products.
  3. Navigate to the ad5940-examples and open the AD5940_BATImpedance example.
  4. Configure the default measurement parameters to your requirements.
    • Use the AD5940BATStructInit(void) function.
    • The data structure AppBATCfg_Type contains the configurable parameters for the application.
    • Note, the hardware is optimized for frequencies above 1Hz. Measurements below this value are noisier due in part to the 1/f noise of the external amplifiers.
  5. Build and compile the example project into a .BIN or .HEX file that can be used to flash the embedded target.

Serial Terminal Output

The measurement results are sent to the PC via UART. To establish connection over UART, connect the Micro-USB cable to the PC and to the EVAL-ADICUP3029 board. A serial terminal program is required to display the results. The following is the UART configuration:

  Select COM Port
  Baud rate: 230400
  Data: 8 bit
  Parity: none
  Stop: 1 bit
  Flow Control: none

A serial terminal is an application that runs on a PC or laptop that is used to display data and interact with a connected device (including many of the Circuits from the Lab reference designs). The device's UART peripheral is most often connected to a UART to USB interface IC, which appears as a traditional COM port on the host PC/ laptop. (Traditionally, the device's UART port would have been connected to an RS-232 line driver / receiver and connected to the PC via a 9-pin or 25-pin serial port.) There are many open-source applications, and while there are many choices, typically we use one of the following:

Before continuing, please make sure you download and install one of the above programs.

There are several parameters on all serial terminal programs that must be setup properly in order for the PC and the connected device to communicate. Below are the common settings that must match on both the PC side and the connected UART device.

  1. COM Port - This is the physical connection made to your PC or Laptop, typically made through a USB cable but can be any serial communications cable. You can determine the COM port assigned to your device by visiting the device manager on your computer. Another method for identifying which COM port is associated with a USB-based device is to look at which COM ports are present before plugging in your device, then plug in your device, and look for a new COM port.
  2. Baud Rate - This is the speed at which data is being transferred from the connected device to your PC. These parameters must be the same on both devices or data will be corrupted. The default setting for most of the reference designs in 115200.
  3. Data Bits - The number of data bits per transfer. Typically UART transmits ASCII codes back to the serial port so by default this is almost always set to 8-Bits.
  4. Stop Bits - The number of “stop” conditions per transmission. This usually set to 1, but can be set to 2 for redundancy.
  5. Parity - Is a way to check for errors during the UART transmission. Unless otherwise specified, set parity to “none”.
  6. Flow Control - Is a way to ensure that data lose between fast and slow devices on the same UART bus are not lost during transmission. This is typically not implemented in a simple system, and unless otherwise specified, set to “none”.

In many instances there are other options that each of the different serial terminal applications provide, such as local line echo or local line editing, and features like this can be turned on or off depending on your preferences. This setup guide will not go over all the options of each tool, but just the minor features that will make it easier to read back data from the connected devices.

Example setup using Putty

  1. Plug in your connected device using a USB cable or other serial cable.
  2. Wait for the device driver of the connected device to install on your PC or Laptop.
  3. Open your device manager, and find out which COM port was assigned to your device.
  4. Open up your serial terminal program (Putty for this example)
  5. Click on the serial configuration tab or window, and input the settings to match the requirements of your connected device. The default baud rate for most of the reference designs is 115200. Make sure that is the selected baud rate as well.
  6. Ensure that local echo and line editing are enabled, so that you can see what you type and are able to correct mistakes. (Some devices may echo typed characters - if so, you will see each typed character twice. If this happens, turn off local echo.)
  7. Click on the open button, and as long as your connected device and serial terminal program are setup the same, than you should see data displaying.
Hint: If you see nothing in the serial terminal, try hitting the reset button on the embedded development board.

Battery Test and Results

Below is an example of the Nyquist plot obtained for a Lithium Ion battery measured using the EVAL-AD5941BATZ.

Schematic, PCB Layout, Bill of Materials

EVAL-AD5941BATZ Design & Integration Files

  • Schematics
  • PCB Layout
  • Bill of Materials
  • Allegro project

End of Document

評論

查看更多

下載排行

本周

  1. 1電子電路原理第七版PDF電子教材免費下載
  2. 0.00 MB  |  1491次下載  |  免費
  3. 2單片機典型實例介紹
  4. 18.19 MB  |  95次下載  |  1 積分
  5. 3S7-200PLC編程實例詳細資料
  6. 1.17 MB  |  27次下載  |  1 積分
  7. 4筆記本電腦主板的元件識別和講解說明
  8. 4.28 MB  |  18次下載  |  4 積分
  9. 5開關(guān)電源原理及各功能電路詳解
  10. 0.38 MB  |  11次下載  |  免費
  11. 6100W短波放大電路圖
  12. 0.05 MB  |  4次下載  |  3 積分
  13. 7基于單片機和 SG3525的程控開關(guān)電源設(shè)計
  14. 0.23 MB  |  4次下載  |  免費
  15. 8基于AT89C2051/4051單片機編程器的實驗
  16. 0.11 MB  |  4次下載  |  免費

本月

  1. 1OrCAD10.5下載OrCAD10.5中文版軟件
  2. 0.00 MB  |  234313次下載  |  免費
  3. 2PADS 9.0 2009最新版 -下載
  4. 0.00 MB  |  66304次下載  |  免費
  5. 3protel99下載protel99軟件下載(中文版)
  6. 0.00 MB  |  51209次下載  |  免費
  7. 4LabView 8.0 專業(yè)版下載 (3CD完整版)
  8. 0.00 MB  |  51043次下載  |  免費
  9. 5555集成電路應用800例(新編版)
  10. 0.00 MB  |  33562次下載  |  免費
  11. 6接口電路圖大全
  12. 未知  |  30320次下載  |  免費
  13. 7Multisim 10下載Multisim 10 中文版
  14. 0.00 MB  |  28588次下載  |  免費
  15. 8開關(guān)電源設(shè)計實例指南
  16. 未知  |  21539次下載  |  免費

總榜

  1. 1matlab軟件下載入口
  2. 未知  |  935053次下載  |  免費
  3. 2protel99se軟件下載(可英文版轉(zhuǎn)中文版)
  4. 78.1 MB  |  537793次下載  |  免費
  5. 3MATLAB 7.1 下載 (含軟件介紹)
  6. 未知  |  420026次下載  |  免費
  7. 4OrCAD10.5下載OrCAD10.5中文版軟件
  8. 0.00 MB  |  234313次下載  |  免費
  9. 5Altium DXP2002下載入口
  10. 未知  |  233046次下載  |  免費
  11. 6電路仿真軟件multisim 10.0免費下載
  12. 340992  |  191183次下載  |  免費
  13. 7十天學會AVR單片機與C語言視頻教程 下載
  14. 158M  |  183277次下載  |  免費
  15. 8proe5.0野火版下載(中文版免費下載)
  16. 未知  |  138039次下載  |  免費
主站蜘蛛池模板: xxxxxxxxxxx性bbbb| 亚洲欧美在线观看| 手机看片1024免费视频| 天天躁狠狠躁夜夜躁| 亚洲第一视频网| 天天躁日日2018躁狠狠躁| 爽死你个放荡粗暴小淫视频| 免费一级毛片正在播放| 国产美女视频爽爽爽| 欧美 激情 在线| 婷婷久久精品| 一级毛片黄色片| 四虎国产精品免费入口| 日本日b视频| 国产一区二卡三区四区| www.五月婷婷| 免费久久久久| 成年1314在线观看| aaaaa国产毛片| 色人岛| 六月综合| 午夜神马福利| 成人免费久久精品国产片久久影院| 91在线免费观看网站| 91视频啪啪| 色宅男| 黄欧美| 天天操狠狠| 国产hs免费高清在线观看| 中文三级视频| 日本三级日产三级国产三级| 国模伊人| 日本免费黄色网址| avtt天堂网 手机资源| 亚洲一区二区色| 男女爱爱视频免费看| 夜夜做夜夜爽| 视色4setv.com| 亚洲瑟瑟网| 精品国产三级a∨在线| 天天色综|