完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 芯片封裝
安裝半導體集成電路芯片用的外殼,起著安放、固定、密封、保護芯片和增強電熱性能的作用,而且還是溝通芯片內部世界與外部電路的橋梁——芯片上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印制板上的導線與其他器件建立連接。
安裝半導體集成電路芯片用的外殼,起著安放、固定、密封、保護芯片和增強電熱性能的作用,而且還是溝通芯片內部世界與外部電路的橋梁——芯片上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印制板上的導線與其他器件建立連接。因此,封裝對CPU和其他LSI集成電路都起著重要的作用
自從Intel公司1971年設計制造出4位微處理器芯片以來,20多年里,CPU從Intel 4004、80286、80386、80486發(fā)展到Pentium、PⅡ、PⅢ、P4,從4位、8位、16位、32位發(fā)展到64位;主頻從MHz發(fā)展到今天的GHz;CPU芯片里集成的晶體管數由2000多個躍升到千萬以上;半導體制造技術的規(guī)模由SSI、MSI、LSI、VLSI(超大規(guī)模集成電路)達到ULSI。封裝的輸入/輸出(I/O)引腳從幾十根,逐漸增加到幾百根,甚至可能達到2000根。這一切真是一個翻天覆地的變化。
安裝半導體集成電路芯片用的外殼,起著安放、固定、密封、保護芯片和增強電熱性能的作用,而且還是溝通芯片內部世界與外部電路的橋梁——芯片上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印制板上的導線與其他器件建立連接。因此,封裝對CPU和其他LSI集成電路都起著重要的作用
自從Intel公司1971年設計制造出4位微處理器芯片以來,20多年里,CPU從Intel 4004、80286、80386、80486發(fā)展到Pentium、PⅡ、PⅢ、P4,從4位、8位、16位、32位發(fā)展到64位;主頻從MHz發(fā)展到今天的GHz;CPU芯片里集成的晶體管數由2000多個躍升到千萬以上;半導體制造技術的規(guī)模由SSI、MSI、LSI、VLSI(超大規(guī)模集成電路)達到ULSI。封裝的輸入/輸出(I/O)引腳從幾十根,逐漸增加到幾百根,甚至可能達到2000根。這一切真是一個翻天覆地的變化。
對于CPU,大家已經很熟悉了,286、386、486、Pentium、PⅡ、Celeron、K6、K6-2、Athlon……相信您可以如數家珍似地列出一長串。但談到CPU和其他大規(guī)模集成電路的封裝,知道的人未必很多。 所謂封裝是指安裝半導體集成電路芯片用的外殼,它不僅起著安放、固定、密封、保護芯片和增強導熱性能的作用,而且還是溝通芯片內部世界與外部電路的橋梁--芯片上的接點用導線連接到封裝外殼的引腳上,這些引腳又通過印刷電路板上的導線與其他器件建立連接。因此,封裝對CPU和其他LSI(Large Scalc Integrat~on)集成電路都起著重要的作用,新一代CPU的出現常常伴隨著新的封裝形式的使用。 芯片的封裝技術已經歷了好幾代的變遷,從DIP,QFP,PGA,BGA,到CSP再到MCM,技術指標一代比一代先進,包括芯片面積與封裝面積之比越來越接近于1,適用頻率越來越高,耐溫性能越來越好。引腳數增多,引腳間距減小,重量減小,可靠性提高,使用更加方便等等。
封裝步驟
板上芯片(ChipOnBoard,COB)工藝過程首先是在基底表面用導熱環(huán)氧樹脂(一般用摻銀顆粒的環(huán)氧樹脂)覆蓋硅片安放點,然后將硅片直接安放在基底表面,熱處理至硅片牢固地固定在基底為止,隨后再用絲焊的方法在硅片和基底之間直接建立電氣連接 。
裸芯片技術主要有兩種形式:一種是COB技術,另一種是倒裝片技術(FlipChip)。板上芯片封裝(COB),半導體芯片交接貼裝在印刷線路板上,芯片與基板的電氣連接用引線縫合方法實現,芯片與基板的電氣連接用引線縫合方法實現,并用樹脂覆蓋以確保可靠性。雖然COB是最簡單的裸芯片貼裝技術,但它的封裝密度遠不如TAB和倒片焊技術 。
COB主要的焊接方法
(1)熱壓焊
利用加熱和加壓力使金屬絲與焊區(qū)壓焊在一起。其原理是通過加熱和加壓力,使焊區(qū)(如AI)發(fā)生塑性形變同時破壞壓焊界面上的氧化層,從而使原子間產生吸引力達到“鍵合”的目的,此外,兩金屬界面不平整加熱加壓時可使上下的金屬相互鑲嵌。此技術一般用為玻璃板上芯片COG 。
(2)超聲焊
超聲焊是利用超聲波發(fā)生器產生的能量,通過換能器在超高頻的磁場感應下,迅速伸縮產生彈性振動,使劈刀相應振動,同時在劈刀上施加一定的壓力,于是劈刀在這兩種力的共同作用下,帶動AI絲在被焊區(qū)的金屬化層如(AI膜)表面迅速摩擦,使AI絲和AI膜表面產生塑性變形,這種形變也破壞了AI層界面的氧化層,使兩個純凈的金屬表面緊密接觸達到原子間的結合,從而形成焊接。主要焊接材料為鋁線焊頭,一般為楔形 。
(3)金絲焊
球焊在引線鍵合中是最具代表性的焊接技術,因為現在的半導體封裝二、三極管封裝都采用AU線球焊。而且它操作方便、靈活、焊點牢固(直徑為25UM的AU絲的焊接強度一般為0.07~0.09N/點),又無方向性,焊接速度可高達15點/秒以上。金絲焊也叫熱(壓)(超)聲焊主要鍵合材料為金(AU)線焊頭為球形故為球焊 。
COB封裝流程
第一步:擴晶。采用擴張機將廠商提供的整張LED晶片薄膜均勻擴張,使附著在薄膜表面緊密排列的LED晶粒拉開,便于刺晶。第二步:背膠。將擴好晶的擴晶環(huán)放在已刮好銀漿層的背膠機面上,背上銀漿。點銀漿。適用于散裝LED芯片。采用點膠機將適量的銀漿點在PCB印刷線路板上。第三步:將備好銀漿的擴晶環(huán)放入刺晶架中,由操作員在顯微鏡下將LED晶片用刺晶筆刺在PCB印刷線路板上。第四步:將刺好晶的PCB印刷線路板放入熱循環(huán)烘箱中恒溫靜置一段時間,待銀漿固化后取出(不可久置,不然LED芯片鍍層會烤黃,即氧化,給邦定造成困難)。如果有LED芯片邦定,則需要以上幾個步驟;如果只有IC芯片邦定則取消以上步驟。第五步:粘芯片。用點膠機在PCB印刷線路板的IC位置上適量的紅膠(或黑膠),再用防靜電設備(真空吸筆或子)將IC裸片正確放在紅膠或黑膠上。第六步:烘干。將粘好裸片放入熱循環(huán)烘箱中放在大平面加熱板上恒溫靜置一段時間,也可以自然固化(時間較長)。第七步:邦定(打線)。采用鋁絲焊線機將晶片(LED晶粒或IC芯片)與PCB板上對應的焊盤鋁絲進行橋接,即COB的內引線焊接。第八步:前測。使用專用檢測工具(按不同用途的COB有不同的設備,簡單的就是高精密度穩(wěn)壓電源)檢測COB板,將不合格的板子重新返修。第九步:點膠。采用點膠機將調配好的AB膠適量地點到邦定好的LED晶粒上,IC則用黑膠封裝,然后根據客戶要求進行外觀封裝。第十步:固化。將封好膠的PCB印刷線路板放入熱循環(huán)烘箱中恒溫靜置,根據要求可設定不同的烘干時間。第十一步:后測。將封裝好的PCB印刷線路板再用專用的檢測工具進行電氣性能測試,區(qū)分好壞優(yōu)劣 。
與其它封裝技術相比,COB技術價格低廉(僅為同芯片的1/3左右)、節(jié)約空間、工藝成熟。但任何新技術在剛出現時都不可能十全十美,COB技術也存在著需要另配焊接機及封裝機、有時速度跟不上以及PCB貼片對環(huán)境要求更為嚴格和無法維修等缺點 。
某些板上芯片(CoB)的布局可以改善IC信號性能,因為它們去掉了大部分或全部封裝,也就是去掉了大部分或全部寄生器件。然而,伴隨著這些技術,可能存在一些性能問題。在所有這些設計中,由于有引線框架片或BGA標志,襯底可能不會很好地連接到VCC或地。可能存在的問題包括熱膨脹系數(CTE)問題以及不良的襯底連接 。
倒裝芯片技術的發(fā)展
30多年前,“倒裝芯片”問世。當時為其冠名為“C4”,即“可控熔塌芯片互連”技術。該技術首先采用銅,然后在芯片與基板之間制作高鉛焊球。銅或高鉛焊球與基板之間的連接通過易熔焊料來實現。此后不久出現了適用于汽車市場的“封帽上的柔性材料(FOC)”;還有人采用Sn封帽,即蒸發(fā)擴展易熔面或E3工藝對C4工藝做了進一步的改進。C4工藝盡管實現起來比較昂貴(包括許可證費用與設備的費用等),但它還是為封裝技術提供了許多性能與成本優(yōu)勢。與引線鍵合工藝不同的是,倒裝芯片可以批量完成,因此還是比較劃算 。
由于新型封裝技術和工藝不斷以驚人的速度涌現,因此完成具有數千個凸點的芯片設計目前已不存在大的技術障礙小封裝技術工程師可以運用新型模擬軟件輕易地完成各種電、熱、機械與數學模擬。此外,以前一些世界知名公司專為內部使用而設計的專用工具目前已得到廣泛應用。為此設計人員完全可以利用這些新工具和新工藝最大限度地提高設計性,最大限度地縮短面市的時間 。
無論人們對此抱何種態(tài)度,倒裝芯片已經開始了一場工藝和封裝技術革命,而且由于新材料和新工具的不斷涌現使倒裝芯片技術經過這么多年的發(fā)展以后仍能處于不斷的變革之中。為了滿足組裝工藝和芯片設計不斷變化的需求,基片技術領域正在開發(fā)新的基板技術,模擬和設計軟件也不斷更新升級。因此,如何平衡用最新技術設計產品的愿望與以何種適當款式投放產品之間的矛盾就成為一項必須面對的重大挑戰(zhàn)。由于受互連網帶寬不斷變化以及下面列舉的一些其它因素的影響,許多設計人員和公司不得不轉向倒裝芯片技術 。
其它因素包括:
①減小信號電感——40Gbps(與基板的設計有關);②降低電源/接地電感;③提高信號的完整性;④最佳的熱、電性能和最高的可靠性;⑤減少封裝的引腳數量;⑥超出引線鍵合能力,外圍或整個面陣設計的高凸點數量;⑦當節(jié)距接近200μm設計時允許;S片縮小(受焊點限制的芯片);⑧允許BOAC設計,即在有源電路上進行凸點設計 。
芯片常用封裝介紹
1、BGA 封裝 (ball grid array)
球形觸點陳列,表面貼裝型封裝之一。在印刷基板的背面按陳列方式制作出球形凸點用 以 代替引腳,在印 刷基板的正面裝配 LSI 芯片,然后用模壓樹脂或灌封方法進行密封。也 稱為凸 點陳列載體(PAC)。引腳可超過200,是多引腳 LSI 用的一種封裝。 封裝本體也可做得比 QFP(四側引腳扁平封裝)小。例如,引腳中心距為1.5mm 的360 引腳 BGA 僅為31mm 見方;而引腳中心距為0.5mm 的304 引腳 QFP 為40mm 見方。而且 BGA 不 用擔 心 QFP 那樣的引腳變形問題。 該封裝是美國 Motorola 公司開發(fā)的,首先在便攜式電話等設備中被采用,今后在 美國有 可 能在個人計算機中普及。最初,BGA 的引腳(凸點)中心距為 1.5mm,引腳數為225。現在 也有 一些 LSI 廠家正在開發(fā)500 引腳的 BGA。 BGA 的問題是回流焊后的外觀檢查。現在尚不清楚是否有效的外觀檢查方 法。有的認為 , 由于焊接的中心距較大,連接可以看作是穩(wěn)定的,只能通過功能檢查來處理。 美國 Motorola 公司把用模壓樹脂密封的封裝稱為 OMPAC,而把灌封方法密封的封裝稱為 GPAC(見 OMPAC 和 GPAC)。
2、BQFP 封裝 (quad flat package with bumper)
帶緩沖墊的四側引腳扁平封裝。QFP 封裝之一,在封裝本體的四個角設置突起(緩沖墊) 以 防止在運送過程 中引腳發(fā)生彎曲變形。美國半導體廠家主要在微處理器和 ASIC 等電路中 采用 此封裝。引腳中心距0.635mm, 引腳數從84 到196 左右(見 QFP)。
3、碰焊 PGA 封裝 (butt joint pin grid array)
表面貼裝型 PGA 的別稱(見表面貼裝型 PGA)。
4、C-(ceramic) 封裝
表示陶瓷封裝的記號。例如,CDIP 表示的是陶瓷 DIP。是在實際中經常使用的記號。
5、Cerdip 封裝
用玻璃密封的陶瓷雙列直插式封裝,用于 ECL RAM,DSP(數字信號處理器)等電路。帶有 玻璃窗口的Cerdip
用于紫外線擦除型 EPROM 以及內部帶有 EPROM 的微機電路等。引腳中 心 距2.54mm,引腳數從8 到42。在 日本,此封裝表示為 DIP-G(G 即玻璃密封的意思)。
6、Cerquad 封裝
表面貼裝型封裝之一,即用下密封的陶瓷 QFP,用于封裝 DSP 等的邏輯 LSI 電路。帶有窗 口的 Cerquad用 于封裝 EPROM 電路。散熱性比塑料 QFP 好,在自然空冷條件下可容許1. 5~ 2W 的功率。但封裝成本比塑料
QFP 高3~5 倍。引腳中心距有1.27mm、0.8mm、0.65mm、 0.5mm、 0.4mm 等多種規(guī)格。引腳數從32 到368。
帶引腳的陶瓷芯片載體,表面貼裝型封裝之一,引腳從封裝的四個側面引出,呈丁字形 。 帶有窗口的用于 封裝紫外線擦除型 EPROM 以及帶有 EPROM 的微機電路等。此封裝也稱為 QFJ、QFJ-G(見 QFJ)。
7、CLCC 封裝 (ceramic leaded chip carrier)
帶引腳的陶瓷芯片載體,表面貼裝型封裝之一,引腳從封裝的四個側面引出,呈丁字形。帶有窗口的用于封裝紫 外線擦除型 EPROM 以及帶有 EPROM 的微機電路等。此封裝也稱為 QFJ、QFJ-G(見 QFJ)。
8、COB 封裝 (chip on board)
板上芯片封裝,是裸芯片貼裝技術之一,半導體芯片交接貼裝在印刷線路板上,芯片與基 板的電氣連接用引線縫合方法實現,芯片與基板的電氣連接用引線縫合方法實現,并用樹脂覆 蓋以確保可*性。雖然 COB 是最簡單的裸芯片貼裝技術,但它的封裝密度遠不如 TAB 和倒片 焊技術。
9、DFP(dual flat package)
雙側引腳扁平封裝。是 SOP 的別稱(見 SOP)。以前曾有此稱法,現在已基本上不用。
10、DIC(dual in-line ceramic package)
陶瓷 DIP(含玻璃密封)的別稱(見 DIP)。
11、DIL(dual in-line) DIP 的別稱(見 DIP)。歐洲半導體廠家多用此名稱。
12、DIP(dual in-line package) 雙列直插式封裝。
插裝型封裝之一,引腳從封裝兩側引出,封裝材料有塑料和陶瓷兩種。 DIP 是最普及的插裝型封裝,應用范圍包括標準邏輯 IC,存貯器 LSI,微機電路等。
引腳中心距2.54mm,引腳數從6 到64。封裝寬度通常為15.2mm。有的把寬度為7.52mm 和10.16mm 的封 裝分別稱為 skinny DIP 和 slim DIP(窄體型 DIP)。但多數情況下并不加區(qū)分,只簡單地統稱為 DIP。另外,用低熔點玻璃密封的陶瓷 DIP 也稱為 cerdip(見 cerdip)。
13、DSO(dual small out-lint)
雙側引腳小外形封裝。SOP 的別稱(見 SOP)。部分半導體廠家采用此名稱。
14、DICP(dual tape carrier package)
雙側引腳帶載封裝。TCP(帶載封裝)之一。引腳制作在絕緣帶上并從封裝兩側引出。由于利用的是 TAB(自 動帶載焊接)技術,封裝外形非常薄。常用于液晶顯示驅動 LSI,但多數為定制品。另外,0.5mm 厚的存儲器 LSI簿形封裝正處于開發(fā)階段。在日本,按照 EIAJ(日本電子機械工業(yè))會標準規(guī)定,將 DICP 命名為DTP。
15、DIP(dual tape carrier package)
同上。日本電子機械工業(yè)會標準對 DTCP 的命名(見 DTCP)。
16、FP(flat package)
扁平封裝。表面貼裝型封裝之一。QFP 或 SOP(見 QFP 和 SOP)的別稱。部分半導體廠家采用此名稱。
17、Flip-chip
倒焊芯片。裸芯片封裝技術之一,在 LSI 芯片的電極區(qū)制作好金屬凸點,然后把金屬凸點與印刷基板上 的電極區(qū)進行壓焊連接。封裝的占有面積基本上與芯片尺寸相同。是所有封裝技術中體積最小、最薄的一種。
但如果基板的熱膨脹系數與 LSI 芯片不同,就會在接合處產生反應,從而影響連接的可靠性。因此必須用樹脂來加固 LSI 芯片,并使用熱膨脹系數基本相同的基板材料。其中SiS 756北橋芯片采用最新的Flip-chip封裝,全面支持AMD Athlon 64/FX中央處理器。支持PCI Express X16接口,提供顯卡最高8GB/s雙向傳輸帶寬。支持最高HyperTransport Technology,最高2000MT/s MHz的傳輸帶 寬。內建矽統科技獨家Advanced HyperStreaming Technology,MuTIOL 1G Technology。
18、FQFP(fine pitch quad flat package)
小引腳中心距 QFP。通常指引腳中心距小于0.65mm 的 QFP(見 QFP)。部分導導體廠家采用此名稱。塑 料四邊引出扁平封裝 PQFP(Plastic Quad Flat Package)PQFP 的封裝形式最為普遍。其芯片引腳之間距離很小,引腳很細,很多大規(guī)模或超大集成電路都采用這 種封裝形式,引腳數量一般都在100個以上。Intel 系列 CPU 中80286、80386和某些486主板芯片采用這種封裝形式。 此種封裝形式的芯片必須采用 SMT 技術(表面安裝設備)將芯片與電路板焊接起來。采用 SMT 技術安裝的芯片 不必在電路板上打孔,一般在電路板表面上有設計好的相應引腳的焊點。將芯片各腳對準相應的焊點,即可實現 與主板的焊接。用這種方法焊上去的芯片,如果不用專用工具是很難拆卸下來的。SMT 技術也被廣泛的使用在芯 片焊接領域,此后很多高級的封裝技術都需要使用 SMT 焊接。
以下是一顆 AMD 的 QFP 封裝的286處理器芯片。0.5mm 焊區(qū)中心距,208根 I/O 引腳,外形尺寸28×28mm, 芯片尺寸10×10mm,則芯片面積/封裝面積=10×10/28×28=1:7.8,由此可見 QFP 比 DIP 的封裝尺寸大大減小了。
PQFP 封裝的主板聲卡芯片 19、CPAC(globe top pad array carrier)
美國 Motorola 公司對 BGA 的別稱(見 BGA)。
20、CQFP 軍用晶片陶瓷平版封裝 (Ceramic Quad Flat-pack Package)
右邊這顆晶片為一種軍用晶片封裝(CQFP),這是封裝還沒被放入晶體以前的樣子。這種封裝在軍用品以及航太工 業(yè)用晶片才有機會見到。晶片槽旁邊有厚厚的黃金隔層(有高起來,照片上不明顯)用來防止輻射及其他干擾。 外圍有螺絲孔可以將晶片牢牢固定在主機板上。而最有趣的就是四周的鍍金針腳,這種設計可以大大減少晶片封裝的厚度並提供極佳的散熱。
21、H-(with heat sink)
表示帶散熱器的標記。例如,HSOP 表示帶散熱器的 SOP。
22、Pin Grid Array(Surface Mount Type)
表面貼裝型 PGA。通常 PGA 為插裝型封裝,引腳長約3.4mm。表面貼裝型 PGA 在封裝的 底面有陳列狀的引腳,其長度從1.5mm 到2.0mm。貼裝采用與印刷基板碰焊的方法,因而也稱 為碰焊 PGA。因為引腳中心距只有1.27mm,比插裝型 PGA 小一半,所以封裝本體可制作得不 怎么大,而引腳數比插裝型多(250~528),是大規(guī)模邏輯 LSI 用的封裝。封裝的基材有多層陶瓷基板和玻璃環(huán)氧樹脂印刷基數。以多層陶瓷基材制作封裝已經實用化。
PGA 封裝 威剛迷你 DDR333本內存
23、JLCC 封裝(J-leaded chip carrier)
J 形引腳芯片載體。指帶窗口 CLCC 和帶窗口的陶瓷 QFJ 的別稱(見 CLCC 和 QFJ)。部分半導體廠家 采用的名稱。
24、LCC 封裝(Leadless chip carrier)
無引腳芯片載體。指陶瓷基板的四個側面只有電極接觸而無引腳的表面貼裝型封裝。是高速和高頻 IC 用 封裝,也稱為陶瓷 QFN 或 QFN-C(見 QFN)。
25、LGA 封裝(land grid array)
觸點陳列封裝。即在底面制作有陣列狀態(tài)坦電極觸點的封裝。裝配時插入插座即可。現已實用的有227 觸 點(1.27mm 中心距)和447 觸點(2.54mm 中心距)的陶瓷 LGA,應用于高速邏輯 LSI 電路。
LGA 與 QFP 相比,能夠以比較小的封裝容納更多的輸入輸出引腳。另外,由于引線的阻抗小,對于高速 LSI 是很適用的。但由于插座制作復雜,成本高,現在基本上不怎么使用。預計今后對其需求會有所增加。
AMD 的2.66GHz 雙核心的 Opteron F 的 Santa Rosa 平臺 26、LOC 封裝(lead on chip)
芯片上引線封裝。LSI 封裝技術之一,引線框架的前端處于芯片上方的一種結構,芯片的中心附近制作 有凸焊點,用引線縫合進行電氣連接。與原來把引線框架布置在芯片側面附近的結構相比,在相同大小的封裝中容納的芯片達1mm 左右寬度。
日立金屬推出2.9mm 見方3軸加速度傳感器
27、LQFP 封裝(low profile quad flat package)
薄型 QFP。指封裝本體厚度為1.4mm 的 QFP,是日本電子機械工業(yè)會根據制定的新 QFP外形規(guī)格所用的名稱。
28、L-QUAD 封裝
陶瓷 QFP 之一。封裝基板用氮化鋁,基導熱率比氧化鋁高7~8 倍,具有較好的散熱性。 封裝的框架用氧化鋁,芯片用灌封法密封,從而抑制了成本。是為邏輯 LSI 開發(fā)的一種封裝,在自然空冷條件下可容許 W3的功率。現已開發(fā)出了208 引腳(0.5mm 中心距)和160 引腳(0.65mm 中心距)的 LSI 邏輯用封
裝,并于1993 年10 月開始投入批量生產。
29、MCM封裝(multi-chip module)
多芯片組件。將多塊半導體裸芯片組裝在一塊布線基板上的一種封裝。
根據基板材料可分為MCM-L,MCM-C 和MCM-D 三大類。
MCM-L 是使用通常的玻璃環(huán)氧樹脂多層印刷基板的組件。布線密度不怎么高,成本較低。
MCM-C 是用厚膜技術形成多層布線,以陶瓷(氧化鋁或玻璃陶瓷)作為基板的組件,與使用多層陶瓷基板的厚膜混合IC 類似。兩者無明顯差別。布線密度高于MCM-L。
MCM-D 是用薄膜技術形成多層布線,以陶瓷(氧化鋁或氮化鋁)或Si、Al 作為基板的組件。布線密謀在三種組件中是最高的,但成本也高。
30、MFP 封裝( mini flat package)
小形扁平封裝。塑料 SOP 或 SSOP 的別稱(見 SOP 和 SSOP)。部分半導體廠家采用的名稱。
31、MQFP 封裝 (metric quad flat package)
按照 JEDEC(美國聯合電子設備委員會)標準對 QFP 進行的一種分類。指引腳中心距為0.65mm、本體厚度 為3.8mm~2.0mm 的標準 QFP(見 QFP)。
32、MQUAD 封裝 (metal quad)
美國 Olin 公司開發(fā)的一種 QFP 封裝。基板與封蓋均采用鋁材,用粘合劑密封。在自然空冷條件下可 容許2.5W~2.8W 的功率。日本新光電氣工業(yè)公司于1993 年獲得特許開始生產。
33、MSP 封裝 (mini square package)
QFI 的別稱(見 QFI),在開發(fā)初期多稱為 MSP。QFI 是日本電子機械工業(yè)會規(guī)定的名稱。
34、OPMAC 封裝 (over molded pad array carrier)
模壓樹脂密封凸點陳列載體。美國 Motorola 公司對模壓樹脂密封 BGA 采用的名稱(見 BGA)。
35、P-(plastic) 封裝
表示塑料封裝的記號。如 PDIP 表示塑料 DIP。
36、PAC 封裝 (pad array carrier)
凸點陳列載體,BGA 的別稱(見 BGA)。
37、PCLP(printed circuit board leadless package)
印刷電路板無引線封裝。日本富士通公司對塑料 QFN(塑料 LCC)采用的名稱(見 QFN)。引腳中心距有
0.55mm 和0.4mm 兩種規(guī)格。目前正處于開發(fā)階段。
38、PFPF(plastic flat package)
塑料扁平封裝。塑料 QFP 的別稱(見 QFP)。部分 LSI 廠家采用的名稱。
39、PGA(pin grid array)
陳列引腳封裝。插裝型封裝之一,其底面的垂直引腳呈陳列狀排列。封裝基材基本上都采用多層陶瓷基 板。在未專門表示出材料名稱的情況下,多數為陶瓷 PGA,用于高速大規(guī)模邏輯 LSI 電路。成本較高。引腳中心 距通常為2.54mm,引腳數從64 到447 左右。了為降低成本,封裝基材可用玻璃環(huán)氧樹脂印刷基板代替。也有64~
256 引腳的塑料 PGA。另外,還有一種引腳中心距為1.27mm 的短引腳表面貼裝型 PGA(碰焊 PGA)。(見表面貼
裝型 PGA)。
40、Piggy Back
馱載封裝。指配有插座的陶瓷封裝,形關與 DIP、QFP、QFN 相似。在開發(fā)帶有微機的設備時用于評 價程序確認操作。例如,將 EPROM 插入插座進行調試。這種封裝基本上都是定制品,市場上不怎么流通。
封裝是對制造完成的晶圓進行劃片、貼片、電鍍等一系列工藝,以保護晶圓上的芯片免受物理、化學等環(huán)境因素造成的損傷,同時增強芯片的散熱性能.我們可以簡單的理解...
封裝,Package,是把集成電路裝配為芯片最終產品的過程,簡單地說,就是把Foundry生產出來的集成電路裸片(Die)放在一塊起到承載作用的基板上,...
2017-08-29 標簽:芯片封裝 8.3萬 0
獲得一顆IC芯片要經過從設計到制造漫長的流程,然而一顆芯片相當小且薄,如果不在外施加保護,會被輕易的刮傷損壞。此外,因為芯片的尺寸微小,如果不用一個較大...
常見的Fan-In(WLCSP)通常可以分為BOP(Bump On Pad)和RDL(Redistribution Layer)。BOP封裝結構簡單,B...
可靠性測試對于芯片的制造和設計過程至關重要。通過進行全面而嚴格的可靠性測試,可以提前發(fā)現并解決潛在的設計缺陷、制造問題或環(huán)境敏感性,從而確保芯片在長期使...
2023-05-20 標簽:芯片封裝 1.7萬 0
還有CSP封裝(Chip Scale Package)、TSOP封裝(Thin Small Outline Package)、PLCC封裝(Plasti...
再做一個數字芯片封裝的原理圖時,希望隱藏電源引腳,但又希望把隱藏的引腳連接到指定的電源網絡。 在AD17以及更早的版本中,如圖有一個示例:我們隱藏第七...
類別:PCB設計規(guī)則 2017-02-15 標簽:芯片封裝貼片技術
類別:PCB設計規(guī)則 2017-02-28 標簽:Altera芯片封裝
芯片封裝形式匯總_介紹各種芯片封裝形式的特點和優(yōu)點
芯片封裝形式多種多樣,各有各的特色,本文匯總了七種芯片封裝形式,詳細列舉了他們的特點。
芯片封裝是指安裝半導體集成電路芯片時采用的外殼,它的作用是安放、固定、蜜蜂、保護芯片和增強芯片電熱性能的作用,也是芯片內部與外部電路的橋梁。芯片上的接點...
2021-07-13 標簽:芯片封裝 2.1萬 0
安裝半導體集成電路芯片用的外殼,起著安放、固定、密封、保護芯片和增強電熱性能的作用,而且還是溝通芯片內部世界與外部電路的橋梁——芯片上的接點用導線連接到...
2017-12-11 標簽:芯片封裝 1.9萬 0
1、什么是COB軟封裝 細心的網友們可能會發(fā)現在有些電路板上面會有一坨黑色的東西,那么這種是什么東西呢?為什么會在電路板上面,到底有什么作用,其實這是一...
自從美國Intel公司1971年設計制造出4位微處a理器芯片以來,在20多年時間內,CPU從Intel4004、80286、80386、80486發(fā)展到...
為突破引腳數的限制,20世紀80年代開發(fā)了PGA封裝,雖然它的引腳節(jié)距仍維持在2.54mm或1.77mm,但由于采用底面引出方式,因而引腳數可高達500...
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發(fā)電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |