完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>
標簽 > 角度傳感器
角度傳感器,顧名思義,是用來檢測角度的。它的身體中有一個孔,可以配合樂高的軸。當連結到RCX上時,軸每轉過1/16圈,角度傳感器就會計數一次。
角度傳感器,顧名思義,是用來檢測角度的。它的身體中有一個孔,可以配合樂高的軸。當連結到RCX上時,軸每轉過1/16圈,角度傳感器就會計數一次。往一個方向轉動時,計數增加,轉動方向改變時,計數減少。計數與角度傳感器的初始位置有關。當初始化角度傳感器時,它的計數值被設置為0,如果需要,你可以用編程把它重新復位。
概述
你可以很容易的測出位置和速度。當在機器人身上連接上輪子(或通過齒輪傳動來移動機器人)時,可以依據旋轉的角度和輪子圓周數來推斷機器人移動的距離。然后就可以把距離轉換成速度,你也可以用它除以所用時間。實際上,計算距離的基本方程式為:距離=速度×時間
由此可以得到:速度=距離/時間
角度傳感器,顧名思義,是用來檢測角度的。它的身體中有一個孔,可以配合樂高的軸。當連結到RCX上時,軸每轉過1/16圈,角度傳感器就會計數一次。往一個方向轉動時,計數增加,轉動方向改變時,計數減少。計數與角度傳感器的初始位置有關。當初始化角度傳感器時,它的計數值被設置為0,如果需要,你可以用編程把它重新復位。
概述
你可以很容易的測出位置和速度。當在機器人身上連接上輪子(或通過齒輪傳動來移動機器人)時,可以依據旋轉的角度和輪子圓周數來推斷機器人移動的距離。然后就可以把距離轉換成速度,你也可以用它除以所用時間。實際上,計算距離的基本方程式為:距離=速度×時間
由此可以得到:速度=距離/時間
舉例
如果把角度傳感器連接到馬達和輪子之間的任何一根傳動軸上,必須將正確的傳動比算入所讀的數據。舉一個有關計算的例子。在你的機器人身上,馬達以3:1的傳動比與主輪連接。角度傳感器直接連接在馬達上。所以它與主動輪的傳動比也是3:1。也就是說,角度傳感器轉三周,主動輪轉一周。角度傳感器每旋轉一周計16個單位,所以16*3=48個增量相當于主動輪旋轉一周。我們需要知道齒輪的圓周來計算行進距離。幸運地是,每一個LEGO齒輪的輪胎上面都會標有自身的直徑。我們選擇了體積最大的有軸的輪子,直徑是81.6CM(樂高使用的是公制單位),因此它的周長是81.6×π=81.6×3.14≈256.22CM。已知量都有了:齒輪的運行距離由48除角度所記錄的增量然后再乘以256。我們總結一下。稱R為角度傳感器的分辨率(每旋轉一周計數值),G是角度傳感器和齒輪之間的傳動比率。我們定義I為輪子旋轉一周角度傳感器的增量。即:I=G×R
在例子中,G為3,對于樂高角度傳感器來說,R一直為16.因此,我們可以得到:I=3×16=48
每旋轉一次,齒輪所經過的距離正是它的周長C,應用這個方程式,利用其直徑,你可以得出這個結論。C=D×π
在我們的例子中:C=81.6×3.14=256.22
最后一步是將傳感器所記錄的數據-S轉換成輪子運動的距離-T,使用下面等式:T=S×C/I
如果光電傳感器讀取的數值為296,你可以計算出相應的距離:T=296×256.22/48=1580 距離(T)的單位與輪子直徑單位是相同的。
無接觸角度傳感器無觸點角度傳感器,又稱無接觸電位器,廣泛應用于工業自動化設備、工程機械、紡織機械、造紙印刷機械、石化設備、國防工業等自動控制設備的水平和旋轉角度的測量,也適用于拉絲機等作張力傳感器。
方位角度傳感器
方位角又稱地平經度,是在平面上量度物體之間的角度差的方法之一。傳感器測量方位角是從某點的指北方向線起,依順時針方向到目標方向線之間的水平夾角,是一種兩面角,即午圈所在的平面與通過天體所在的地平經圈平面的夾角,以午圈所在的平面為起始面,按順時針方向度量。方位的度量亦可在地平圈上進行,以南點為起算點,由南點開始按順時針方向計量。方位的大小變化范圍為0°~360°,南點為0°,西點為90°,北點為180°,東點為270°。上述這種方位度量是在天文學中所用的方法。
方位角傳感器在跟隨著軍事技術的發展,有著高科技作戰的性能。傳感器測試系統的信息化是實現中國軍隊裝備現代化建設主要途徑,當務之急應該用高新技術提升老裝備的性能。這既是提升現有武器裝備的一個重要環節,又是最大限度地發揮現有裝備整體作戰效能的一個重要因素。我國現役的炮塔方位角系統中.老型號較多,大部分沒有配備自動檢測和錄取設備。炮塔方位角系統的各種參數的計算、數據的處理和上報大多數由人工進行,難以勝任復雜環境下快速、準確采集。為適應現代化炮塔方位角系統的要求,必須具有一套自動采集和分析能力的完整測試系統。
應用
在程序不僅僅會用到乘法和除法的數學運算,還有更多的需要多留心(有關內容我們將在第12章進行進一步的討論)。
使用角度傳感器來控制你的輪子可以間接的發現障礙物。原理非常簡單:如果馬達運轉,而齒輪不轉,說明你的機器已經被障礙物給擋住了。此技術使用起來非常簡單,而且非常有效;唯一要求就是運動的輪子不能在地板上打滑(或者說打滑次數太多),否則你將無法檢測到障礙物。如果是一個空轉的齒輪連接到馬達上就可以避免這個問題,這個輪子不是由馬達驅動而是通過裝置的運動帶動它:在驅動輪旋轉的過程中,如果惰輪停止了,說明你碰到障礙物了。
在許多情況下角度傳感器是非常有用的:控制手臂,頭部和其它可移動部位的位置。值的注意的是,當運行速度太慢或太快時,RCX在精確的檢測和計數方面會受到影響。事實上,問題并不是出在RCX身上,而是它的操作系統,如果速度超出了其指定范圍,RCX就會丟失一些數據。Steve Baker用實驗證明過,轉速在每分鐘50到300轉之間是一個比較合適的范圍,在此之內不會有數據丟失的問題。然而,在低于12rpm或超過1400rpm的范圍內,就會有部分數據出現丟失的問題。而在12rpm至50rpm或者300rpm至1400rpm的范圍內時,RCX也偶會出現數據丟失的問題。
角度傳感器在軍事上的應用
大家熟知的火炮是利用火藥燃氣壓力等能源拋射彈丸,口徑等于和大于20毫米的身管射擊武器。火炮通常由炮身和炮架兩大部分組成。早在1332年,中國的元朝就在部隊中裝備了最早的金屬身管火炮:青銅火銃。火炮通常由炮身和炮架兩大部分組成。火炮射擊時對炮床傾角的要求很高,利用角度傳感器設計的數字式象限儀,可明顯提高校正炮床的速度,降低操作難度。
角度傳感器是作為炮彈發射的準確性,穩定性提供最大的幫助。大家都知道火炮身管用來賦予彈丸初速和飛行方向,炮尾用來裝填炮彈,炮閂用以關閉炮膛,擊發炮彈。如今炮架由反后坐裝置、方向機、高低機、瞄準裝置、大架和運動體,角度傳感器等組成,而反后坐裝置用以保證火炮發射炮彈后的復位,方向機和高低機用來保證火炮發射炮彈后復位,方向機和高低機用來操縱炮身變換方向和高低,瞄準裝置由角度傳感器,瞄準具和瞄準鏡組成,用以裝定火炮射擊數據,實施瞄準射擊,大架和運動體用于射擊時支撐火炮,行軍時作為炮車。
應用場合:
系列傾角,角度傳感器,距離傳感器,加速度傳感器,以及測量方位用的數字羅盤,電子羅盤和陀螺儀已經廣泛的應用應用于石油,煤炭,鋼鐵,船舶,隧道,醫療設備,大壩,機械,物探儀器,地質,巖土,石油,礦山,管道,測斜導管,鐵路、港口、水利、高層建筑,墻洞,礦井、隧道、船塢、抗滑樁和板樁,煤礦,動態沖擊實驗,地質,衛星GPS系統,風水,越野車,航海,實驗儀器,數字水平儀,醫療,機械調平,角度測量和監視,汽車,起重機械運動檢測,康復系統,生物工程系統,虛擬現實、現實放大,體育,慣性導航系統,人體姿態測量工業機械,摩托車陀螺儀,光纖,制導,平衡,導向,方向測量,動態跟蹤,捷聯,慣性,導航,方位角,角速度,速率,機械,爆轉,測量等行業。
典型應用場合:
- 地理: 山體滑坡,雪崩。
- 民用: 大壩,建筑,橋梁,玩具,報警,運輸
- 工業:吊車,吊架,收割機,起重機,稱重系統的傾斜補償,瀝青機.鋪路機等。
- 火車:高速列車轉向架和客車車廂的傾斜測量
- 海事:縱傾和橫滾控制,油輪控制,天線位置控制。
- 鉆井:精確鉆井傾斜控制。
- 機械:傾斜控制,大型機械對準控制,彎曲控制,起重機
- 軍用:火炮和雷達調整,初始位置控制,導航系統,軍用著陸平臺控制。
角度傳感器原理
一旦我們將角度傳感器連接在機器人上時,我們便可以輕松根據角度傳感器檢測到的角度來計算其移動的距離(距離=角度*輪子周長/2π),在得知其行走時間的前提下也可以計算出其平均速度(速度=距離/時間)。
一旦我們把角度傳感器連接在機器人馬達與輪子之間的任何一根傳動軸上時,假設馬達與主輪連接的傳動比為3:1,則角度傳感器與主輪的傳動比也為3:1,即角度傳感器計數16*3=48次時,主輪轉一圈,假設角度傳感器計數x次,則主輪旋轉角度為2π*x/48,機器人行走距離為齒輪圓周長*x/48,便也可以根據其時間計算其平均行走速度了。角度傳感器在日益發展的機器人領域真可謂是發揮了他巨大的作用呀~~
三、應用
在軍事領域,角度傳感器也大大提高了炮彈發射的準確性和穩定性,如今的炮架主要由反后坐裝置、方向機、高低機、瞄準裝置、大架、運動體等構成,其中,方向機和高低機主要用于操縱炮身的方向和高低;瞄準裝置由角度傳感器、瞄準具和瞄準鏡構成,主要用于對目標進行精確的定位(請自行腦補如果沒有角度傳感器,僅僅依靠人力對方向機和高低機進行調節來定位目標的畫面,pong一聲,塵土飛揚,可是。。。并沒有打到目標。。。笑哭~)
除提高炮彈發射準確率外,角度傳感器在鉆井傾斜控制的精確度、稱重系統的傾斜補償、天線位置控制、軍用著陸平臺控制等多方面都有著極其重要的應用,尤其是在機器人日益發展的今天,角度傳感器又將大顯身手。
選擇角度傳感器的四個方法
角度傳感器,在實際操作中應用是比較廣泛的,能夠適用不同行業不同領域各種環境的需要。但為了在測量過程中減小誤差的出現,就需要在選擇質量好的角度傳感器。特別是對于新手而言,該怎么樣判斷角度傳感器的好壞呢?
1、靈敏度的選擇通常,在角度傳感器的線性范圍內,希望角度傳感器的靈敏度越高越好。因為只有靈敏度高時,與被測量變化對應的輸出信號的值才比較大,有利于信號處理。但要注意的是,傳感器的靈敏度高,與被測量無關的外界噪聲也容易混入,也會被放大系統放大,影響測量精度。因此,要求傳感器本身應具有較高的信噪比,盡員減少從外界引入的廠擾信號。傳感器的靈敏度是有方向性的。當被測量是單向量,而且對其方向性要求較高,則應選擇其它方向靈敏度小的傳感器;如果被測量是多維向量,則要求傳感器的交叉靈敏度越小越好。
2、頻率響應特性角度傳感器的頻率響應特性決定了被測量的頻率范圍,必須在允許頻率范圍內保持不失真的測量條件,實際上傳感器的響應總有—定延遲,希望延遲時間越短越好。傳感器的頻率響應高,可測的信號頻率范圍就寬,而由于受到結構特性的影響,機械系統的慣性較大,因有頻率低的傳感器可測信號的頻率較低。在動態測量中,應根據信號的特點(穩態、瞬態、隨機等)響應特性,以免產生過火的誤差。
3、線性范圍角度傳感器的線形范圍是指輸出與輸入成正比的范圍。以理論上講,在此范圍內,靈敏度保持定值。傳感器的線性范圍越寬,則其量程越大,并且能保證一定的測量精度。在選擇傳感器時,當傳感器的種類確定以后首先要看其量程是否滿足要求。但實際上,任何傳感器都不能保證絕對的線性,其線性度也是相對的。當所要求測量精度比較低時,在一定的范圍內,可將非線性誤差較小的傳感器近似看作線性的,這會給測量帶來極大的方便。
4、穩定性傳感器使用一段時間后,其性能保持不變化的能力稱為穩定性。影響傳感器長期穩定性的因素除傳感器本身結構外,主要是傳感器的使用環境。因此,要使傳感器具有良好的穩定性,傳感器必須要有較強的環境適應能力。另外,在選擇角度傳感器之前,應對其使用環境進行調查,并根據具體的使用環境選擇合適的傳感器,或采取適當的措施,減小環境的影響。
角度傳感器是指能感受被測角度并轉換成可用輸出信號的傳感器。 角度傳感器,顧名思義,是用來檢測角度的。它的身體中有一個孔,可以配合樂高的軸。當連結到RCX...
角度位移傳感器是利用角度變化來定位物體位置的電子元件。適用于汽車,工程機械,宇宙裝置、導彈、飛機雷達天線的伺服系統以及注塑機,木工機械,印刷機,電子尺,...
2012-12-06 標簽:角度傳感器 9206 1
芯品# 集成匝數計數器的汽車級高精度模擬 AMR 角度傳感器
TMAG6181-Q1 是一款基于各向異性磁阻 (AMR) 技術的高精度角度傳感器。該器件集成信號調節放大器,并提供與所施加平面磁場的方向相關的差分正弦...
“要保證動車組高速平穩行駛,首先要由加速度傳感器對來自X(軸)、Y(徑)和Z(垂)向的應力進行實時監測,并將電信號傳輸給列車指揮系統。”北京交通大學教授...
角度傳感器用來檢測角度的。它的身體中有一個孔,可以配合樂高的軸。當連結到rcx上時,軸每轉過1/16圈,角度傳感器就會計數一次。
角度傳感器是用來檢測角度的。角度傳感器能感受被測角度并轉換成可用輸出信號的傳感器。本文講述了什么是角度傳感器。
Melexis推出MLX90360角度傳感器:可任意放置,分辨率高達12位角度
Melexis的三軸霍爾傳感器采用了IMC(Integrated Magnetic Concentrator 集磁片)技術。它可以檢測XYZ三個方向的磁...
Allegro公司的A1330器件采用了片上系統(system-on-chip, SoC)架構,集成有CVH前端、數字信號處理、以及模擬或數字PWM輸出信號。
角度傳感器,顧名思義,是用來檢測角度的。在許多情況下角度傳感器是非常有用的:控制手臂,頭部和其它可移動部位的位置。值的注意的是,當運行速度太慢或太快時,...
納芯微全新推出的霍爾效應角度傳感器NSM301x系列芯片是一種非接觸式旋轉角度傳感器,可用于測量360°旋轉角度,在-40°C 至125°C 的環境溫度...
角度傳感器的定義 角度傳感器是指能感受被測角度并轉換成可用輸出信號的傳感器。角度傳感器,顧名思義,是用來檢測角度的。它的身體中有一個孔,可以配合樂高的...
2022-03-09 標簽:角度傳感器 4489 0
Crocus Technology 推出基于電磁感應原理的CT310傳感器
覆性XtremeSense隧道磁阻(TMR)傳感器的領先供應商Crocus Technology Inc.宣布推出CT310傳感器,這是一款具備低噪音性...
編輯推薦廠商產品技術軟件/工具OS/語言教程專題
電機控制 | DSP | 氮化鎵 | 功率放大器 | ChatGPT | 自動駕駛 | TI | 瑞薩電子 |
BLDC | PLC | 碳化硅 | 二極管 | OpenAI | 元宇宙 | 安森美 | ADI |
無刷電機 | FOC | IGBT | 逆變器 | 文心一言 | 5G | 英飛凌 | 羅姆 |
直流電機 | PID | MOSFET | 傳感器 | 人工智能 | 物聯網 | NXP | 賽靈思 |
步進電機 | SPWM | 充電樁 | IPM | 機器視覺 | 無人機 | 三菱電機 | ST |
伺服電機 | SVPWM | 光伏發電 | UPS | AR | 智能電網 | 國民技術 | Microchip |
開關電源 | 步進電機 | 無線充電 | LabVIEW | EMC | PLC | OLED | 單片機 |
5G | m2m | DSP | MCU | ASIC | CPU | ROM | DRAM |
NB-IoT | LoRa | Zigbee | NFC | 藍牙 | RFID | Wi-Fi | SIGFOX |
Type-C | USB | 以太網 | 仿真器 | RISC | RAM | 寄存器 | GPU |
語音識別 | 萬用表 | CPLD | 耦合 | 電路仿真 | 電容濾波 | 保護電路 | 看門狗 |
CAN | CSI | DSI | DVI | Ethernet | HDMI | I2C | RS-485 |
SDI | nas | DMA | HomeKit | 閾值電壓 | UART | 機器學習 | TensorFlow |
Arduino | BeagleBone | 樹莓派 | STM32 | MSP430 | EFM32 | ARM mbed | EDA |
示波器 | LPC | imx8 | PSoC | Altium Designer | Allegro | Mentor | Pads |
OrCAD | Cadence | AutoCAD | 華秋DFM | Keil | MATLAB | MPLAB | Quartus |
C++ | Java | Python | JavaScript | node.js | RISC-V | verilog | Tensorflow |
Android | iOS | linux | RTOS | FreeRTOS | LiteOS | RT-THread | uCOS |
DuerOS | Brillo | Windows11 | HarmonyOS |