? ?RFID標(biāo)簽是RFID應(yīng)用技術(shù)的主要組成部分,RFID標(biāo)簽的性能通常決定整個(gè)應(yīng)用技術(shù)方案的有效性和實(shí)施性,因此RFID技術(shù)的實(shí)施中大多以解決RFID標(biāo)簽性能為主導(dǎo)。標(biāo)簽的組成可分為芯片和天線(xiàn)兩大組成部分,標(biāo)簽的性能及其性能分析也是從這兩個(gè)組成部分展開(kāi)。然而在芯片型號(hào)定型后,天線(xiàn)的性能及與芯片的匹配性也就決定了標(biāo)簽的性能,因此天線(xiàn)的設(shè)計(jì)為標(biāo)簽設(shè)計(jì)主題部分。
目前關(guān)于RFID標(biāo)簽天線(xiàn)的設(shè)計(jì)已有較多的文獻(xiàn),但很少關(guān)于標(biāo)簽實(shí)際應(yīng)用中復(fù)雜材料環(huán)境下的設(shè)計(jì)與測(cè)量的文獻(xiàn)。本文著重介紹了復(fù)雜材料環(huán)境條件下進(jìn)行天線(xiàn)的設(shè)計(jì)與測(cè)量方法,并結(jié)合工程實(shí)施例加以說(shuō)明。
2 RFID標(biāo)簽天線(xiàn)設(shè)計(jì)理論
RFID標(biāo)簽天線(xiàn)的設(shè)計(jì)通常指在給定天線(xiàn)工藝條件下,針對(duì)具體應(yīng)用要求,在規(guī)定尺寸范圍內(nèi)進(jìn)行設(shè)計(jì)與芯片相匹配的天線(xiàn)。在實(shí)際設(shè)計(jì)工程中主要解決規(guī)定的尺寸范圍及工作環(huán)境件下天線(xiàn)的輸入阻抗與芯片在工作頻段達(dá)到共軛匹配。除了天線(xiàn)阻抗匹配設(shè)計(jì)外,還要關(guān)注天線(xiàn)輻射效率、極化方向及輻射方向圖等參數(shù)。
2.1天線(xiàn)的基礎(chǔ)知識(shí)
天線(xiàn)是一種能量轉(zhuǎn)換裝置,即把導(dǎo)行波與空間輻射波相互轉(zhuǎn)換的裝置。天線(xiàn)周?chē)膱?chǎng)強(qiáng)分布一般都是離開(kāi)天線(xiàn)距離和角坐標(biāo)的函數(shù),通常根據(jù)離開(kāi)天線(xiàn)距離的不同,將天線(xiàn)周?chē)膱?chǎng)區(qū)劃分為感應(yīng)場(chǎng)區(qū)、輻射近場(chǎng)區(qū)和輻射遠(yuǎn)場(chǎng)區(qū)。
圖2.1天線(xiàn)周?chē)膱?chǎng)區(qū)
圖2.1(a)所示電尺寸小的偶極子天線(xiàn)其感應(yīng)場(chǎng)區(qū)的外邊界是λ/2π。這里,λ是指工作波長(zhǎng)。圖2.1(b)所示電尺寸大的孔徑天線(xiàn)的輻射場(chǎng)區(qū)又分為近場(chǎng)區(qū)和遠(yuǎn)場(chǎng)區(qū)。
天線(xiàn)一般都有兩方面的特性:電路特性(輸入阻抗、效率、頻帶寬度、匹配程度等)和輻射特性(方向圖、增益、極化、相位等)。天線(xiàn)的測(cè)量就是用實(shí)驗(yàn)方法測(cè)定和檢驗(yàn)天線(xiàn)這些參數(shù)特性。
2.2標(biāo)簽天線(xiàn)設(shè)計(jì)的一般步驟
根據(jù)設(shè)計(jì)要求(標(biāo)簽尺寸、工作頻帶、 匹配芯片、應(yīng)用條件等由要求提出),確定設(shè)計(jì)方案及目標(biāo)參數(shù),建立天線(xiàn)模型,并對(duì)天線(xiàn)模型進(jìn)行仿真計(jì)算。再根據(jù)仿真計(jì)算結(jié)果進(jìn)行調(diào)整設(shè)計(jì)模型,以達(dá)到預(yù)期目標(biāo)參數(shù)。天線(xiàn)的設(shè)計(jì)通常是條件確定的,即各類(lèi)材料參數(shù)、結(jié)構(gòu)分布均為已知,否則設(shè)計(jì)無(wú)從入手。RFID標(biāo)簽應(yīng)用范圍廣,通常材料的介電常數(shù)等不能確定,天線(xiàn)在此環(huán)境下的輸入阻抗及其他參數(shù)成為未知,這就需要通過(guò)測(cè)試確定其參數(shù)。
2.3標(biāo)簽天線(xiàn)的等效測(cè)量
從標(biāo)簽天線(xiàn)的一般設(shè)計(jì)方法可見(jiàn),設(shè)計(jì)之關(guān)鍵是測(cè)試。 RFID標(biāo)簽天線(xiàn)分為HF和UHF,HF的天線(xiàn)通常可忽略介電影響,可直接通過(guò)電橋或阻抗分析儀測(cè)量其電感及分布電容。UHF標(biāo)簽天線(xiàn)的精確測(cè)量較難實(shí)現(xiàn),通常以等效測(cè)量方式以實(shí)現(xiàn)。下面就介紹兩種適用于UHF RFID標(biāo)簽設(shè)計(jì)的測(cè)量方法:
2.3.1.諧振法測(cè)量等效介電常數(shù)
UHF標(biāo)簽天線(xiàn)輸入阻抗對(duì)材料比較敏感,當(dāng)貼附在不同材料上時(shí),其阻抗變化量通常存在較大差異。等效介電常數(shù)是指把復(fù)合材料等效成一均質(zhì)材料,把復(fù)合材料對(duì)天線(xiàn)的綜合影響等效成均質(zhì)材料影響。
如圖2.2(a)一款通用型UHF RFID標(biāo)簽天線(xiàn),其空氣介質(zhì)條件下仿真計(jì)算輸入阻抗頻率曲線(xiàn)如圖2.2(b),使用磁探針實(shí)測(cè)空氣介質(zhì)條件下天線(xiàn)耦合功率曲線(xiàn)如圖2.2(C)。
圖2.2(a)
圖2.2(b)
圖2.2(c)
由圖2.2(b)輸入阻抗曲線(xiàn)圖,天線(xiàn)輸入阻抗的實(shí)部在940MHz附近達(dá)到最大值與2.2(c)中耦合功率曲線(xiàn)圖940MHz附近最小值相對(duì)應(yīng),通常我們說(shuō)天線(xiàn)在940MHz諧振。下面就舉例通過(guò)諧振頻率法來(lái)推算標(biāo)簽所貼附的復(fù)合板的等效介電常數(shù)。
圖2.3(a)
圖2.3(b)
圖2.2(a)所示標(biāo)簽天線(xiàn)貼附于某復(fù)合板上時(shí),實(shí)測(cè)耦合功率曲線(xiàn)如圖2.3(a),可以看到耦合功率最小值飄移至780MHz附近,即天線(xiàn)的諧振頻率變?yōu)?80MHz。
按照復(fù)合板尺寸進(jìn)行仿真計(jì)算,當(dāng)復(fù)合板的介電常數(shù)設(shè)置為3.4時(shí),天線(xiàn)輸入阻抗仿真計(jì)算實(shí)部最大值落在780MHz,如圖2.3(b),復(fù)合板介電常數(shù)等效為3.4。復(fù)合板等效介電常數(shù)已確定,即可按正常設(shè)計(jì)方法進(jìn)行設(shè)計(jì)標(biāo)簽天線(xiàn)。
2.3.2.縮尺模型技術(shù)應(yīng)用與比例測(cè)量法
縮尺模型技術(shù)是指在滿(mǎn)足一定條件下,將天線(xiàn)按一定縮尺比例縮小(或放大),其特性參數(shù)也滿(mǎn)足這一比例呈函數(shù)變化。縮尺模型技術(shù)通常為了便于測(cè)試,制作適于測(cè)試的模型進(jìn)行等效測(cè)試,RFID標(biāo)簽天線(xiàn)的設(shè)計(jì)測(cè)量也可以直接采用縮尺模型技術(shù)進(jìn)行等效測(cè)量。本文對(duì)縮尺模型測(cè)量技術(shù)原本用法不再展開(kāi)討論,本文從另一個(gè)角度展開(kāi)縮尺模型技術(shù)的應(yīng)用。
我們由圖2.2(a)所示天線(xiàn)在空氣中及貼附于復(fù)合板上兩種環(huán)境下其輸入阻抗曲線(xiàn)形狀相同,位置及數(shù)值存在一定邏輯關(guān)系,與縮尺模型技術(shù)存在一定的相似性。由圖2.2(b)和2.3(b)可推算出貼附于復(fù)合板材上時(shí)天線(xiàn)的輸入阻抗頻率乘以1.2與空氣介質(zhì)時(shí)近似。即我們可以通過(guò)測(cè)量?jī)煞N環(huán)境下的天線(xiàn)的諧振頻率,得到頻率變化系數(shù)為1.2。
K=F空/F介=0.94/0.78=1.2
假設(shè)我們要設(shè)計(jì)一款尺寸與2.2(a)所示相同的標(biāo)簽天線(xiàn),貼附于前面所指的復(fù)合板材上,要求其特性參數(shù)與2.2(a)所示天線(xiàn)在空氣條件下相近。按照要求調(diào)整天線(xiàn)結(jié)構(gòu)得到如圖2.4所示天線(xiàn),使其空氣介質(zhì)條件下輸入輸入阻抗曲線(xiàn)與圖2.2(b)的1.2比例相近。圖2.5為圖2.4所示天線(xiàn)仿真計(jì)算輸入阻抗,基本接近1.2比例要求。
圖2.4
圖2.5
通過(guò)比例測(cè)算法可直接確定在復(fù)雜環(huán)境下設(shè)計(jì)目標(biāo),較等效介電常數(shù)測(cè)算法更快捷,工作量減小,該方法在實(shí)際工程設(shè)計(jì)中實(shí)用性較高。
2.4標(biāo)簽天線(xiàn)設(shè)計(jì)頻帶的確定
UHF RFID因每個(gè)國(guó)家的頻段標(biāo)準(zhǔn)不同,因此標(biāo)簽天線(xiàn)設(shè)計(jì),首先要根據(jù)要求確定設(shè)計(jì)頻帶。應(yīng)用天線(xiàn)等效測(cè)算法進(jìn)行天線(xiàn)設(shè)計(jì),天線(xiàn)設(shè)計(jì)頻帶還要乘以比例系數(shù)K。如要求設(shè)計(jì)一款用于美國(guó),附著于常見(jiàn)藥瓶的RFID標(biāo)簽。已知藥瓶通過(guò)測(cè)試計(jì)算出頻率變化比例K=1.19,因美國(guó)頻率段標(biāo)準(zhǔn)為902-928MHz,
所以確定設(shè)計(jì)頻帶為:
Fmin=Fmin標(biāo)×K=902×1.19=1073MHz
Fmax=Fmax標(biāo)×K=928×1.19=1104MHz
即設(shè)計(jì)頻帶為1073-1104MHz,只要使天線(xiàn)在這個(gè)頻帶的特性參數(shù)達(dá)到目標(biāo)值卻可。
應(yīng)用天線(xiàn)等效測(cè)算法進(jìn)行天線(xiàn)設(shè)計(jì),可以省去較多仿真計(jì)算工作,特別是明確在簡(jiǎn)單條件(純天線(xiàn))下的頻帶,這會(huì)使原本復(fù)雜的計(jì)算簡(jiǎn)單化。
2.5動(dòng)態(tài)阻抗匹配的設(shè)計(jì)
芯片在未開(kāi)啟狀態(tài)下通常可等效成容阻電路,即電容電阻并聯(lián)電路。如一款芯片標(biāo)稱(chēng)值為0.85PF,2KΩ,則其輸入阻抗為
Z=(jR/ωC)/( R+1/jωC)=(1-jωCR2)R/[1+(ωCR)2]
芯片輸入阻抗曲線(xiàn)如圖2.6。
圖2.6
由芯片的輸入輸阻抗曲線(xiàn)圖可知,芯片的輸入阻隨頻率變化而變化。當(dāng)芯片綁定到天線(xiàn)上時(shí),還會(huì)增加分布電容,芯片的實(shí)際輸入阻抗與標(biāo)稱(chēng)值還存在一定差異。為了使標(biāo)簽?zāi)軌蚍€(wěn)定工作,滿(mǎn)足較寬頻帶內(nèi)阻抗匹配,通常標(biāo)簽天線(xiàn)設(shè)計(jì)時(shí)考慮芯片的輸入阻抗的動(dòng)態(tài)變化,做動(dòng)態(tài)阻抗匹配設(shè)計(jì)。通常所指的標(biāo)簽天線(xiàn)動(dòng)態(tài)阻抗匹配設(shè)計(jì)是指天線(xiàn)輸入阻抗在設(shè)計(jì)頻帶內(nèi)阻抗變化趨勢(shì)與芯片輸入阻抗共軛值的變化趨勢(shì)相對(duì)應(yīng)。此外動(dòng)態(tài)阻抗匹配設(shè)計(jì)還包含芯片開(kāi)啟、讀、寫(xiě)等各個(gè)狀態(tài)下的輸入阻抗,為了兼顧標(biāo)簽各個(gè)狀態(tài)的性能,設(shè)計(jì)上盡可能地使天線(xiàn)在工作頻帶內(nèi)滿(mǎn)足芯片在各個(gè)狀態(tài)下基本符合匹配條件。
3天線(xiàn)設(shè)計(jì)實(shí)施例
為了更好地理理解本文RFID標(biāo)簽天線(xiàn)設(shè)計(jì)思想,下面通過(guò)一個(gè)具體設(shè)計(jì)工程實(shí)施例簡(jiǎn)單回顧一下整個(gè)設(shè)計(jì)過(guò)程。
3.1確立設(shè)計(jì)目標(biāo)
確立設(shè)計(jì)目標(biāo)是指針對(duì)應(yīng)用需求分析轉(zhuǎn)化為設(shè)計(jì)需求,從而確立設(shè)計(jì)目標(biāo)。
例:開(kāi)發(fā)設(shè)計(jì)一款用于美國(guó)市場(chǎng)藥店瓶裝藥品盤(pán)點(diǎn)管理的標(biāo)簽,要求標(biāo)簽貼于藥瓶標(biāo)貼縫隙處,瓶子陳列于金屬貨架上,最大排列行數(shù)為6行,使用MOTO一款手持讀寫(xiě)器要求達(dá)到1.5米穩(wěn)定盤(pán)點(diǎn)。
對(duì)環(huán)境介質(zhì)條件進(jìn)行測(cè)試,得到設(shè)計(jì)比例系數(shù)為1.17-1.21,介質(zhì)遮擋損耗最大為6dB。確定基本設(shè)計(jì)目標(biāo):
1、 標(biāo)簽天線(xiàn)尺寸4×50mm,
2、 設(shè)計(jì)頻帶1073-1104MHz,
3、 天線(xiàn)增益GEIRP》-2dB
4、 天線(xiàn)阻抗匹配系數(shù)》0.5
3.2建立設(shè)計(jì)模型
因標(biāo)簽天線(xiàn)尺寸較小,根據(jù)設(shè)計(jì)目標(biāo)選用圖3.1所示結(jié)構(gòu)。為了有效增加天線(xiàn)臂寬度,標(biāo)簽天線(xiàn)采用對(duì)稱(chēng)式的雙螺旋臂結(jié)構(gòu)。由電磁感應(yīng)定律中的楞次定律知道,感生電流總是阻逆原生電流變化,由于天線(xiàn)臂螺旋結(jié)構(gòu)使流經(jīng)每個(gè)天線(xiàn)臂的電流環(huán)向相同,感生電流的阻逆作用產(chǎn)生疊加,相當(dāng)于電流在天線(xiàn)臂的流速降低,天線(xiàn)的諧振頻率會(huì)較曲折臂和直臂天線(xiàn)降低。因此對(duì)稱(chēng)螺旋臂天線(xiàn)的長(zhǎng)度相對(duì)傳統(tǒng)的曲折臂天線(xiàn)臂長(zhǎng)短,短臂天線(xiàn)在給定空間內(nèi)可以增寬天線(xiàn)臂,使天線(xiàn)臂寬而短。天線(xiàn)臂的長(zhǎng)寬比越小,天線(xiàn)的阻入阻抗曲線(xiàn)越趨向平滑,與芯片的匹配帶寬增大,因而標(biāo)簽的性能更穩(wěn)定。
圖3.1
3.3模型仿真與阻抗匹配調(diào)整
芯片輸入阻抗已知在920MHz時(shí)為20-j145歐姆,則知天線(xiàn)設(shè)計(jì)阻抗目標(biāo)為20+j145歐姆。套入天線(xiàn)等效測(cè)量技術(shù)則天線(xiàn)輸入阻抗目標(biāo)為:
Z=(20+j145)×1.19=23.8+j172歐姆
對(duì)應(yīng)頻率F=920×1.19=1095MHz
調(diào)整天線(xiàn)臂長(zhǎng)度及閉合環(huán)的尺寸或凹陷程度使其在1095MHz時(shí)天線(xiàn)輸入阻抗接近目標(biāo)值,同時(shí)要考慮設(shè)計(jì)頻帶內(nèi)(1073-1104MHz)阻抗波動(dòng)值,控制波動(dòng)范圍。如圖3.2通過(guò)天線(xiàn)調(diào)整后的天線(xiàn)輸入阻抗曲線(xiàn)圖。
圖3.2
3.4模型制作與測(cè)試
設(shè)計(jì)定型后為了進(jìn)一步確認(rèn)設(shè)計(jì)符合性,可通過(guò)制作模型進(jìn)行測(cè)試,確認(rèn)與設(shè)計(jì)相符性。測(cè)試可分為天線(xiàn)模型測(cè)試和標(biāo)簽?zāi)P蜏y(cè)試,天線(xiàn)測(cè)試可參照2.3.2.所述方法進(jìn)行確認(rèn)天線(xiàn)模型樣品與計(jì)算值的偏差。如圖3.3(a)和圖3.3(b)分別為空氣環(huán)境下測(cè)試耦合功率曲線(xiàn)和貼于藥瓶時(shí)測(cè)試耦合功率曲線(xiàn)。由圖可以看到模型樣品的諧振頻與設(shè)計(jì)基本一致,貼于藥瓶時(shí),頻率變化比例為1.19亦符合。
圖3.3(a)
圖3.3(b)
標(biāo)簽性能可以通過(guò)讀標(biāo)簽開(kāi)啟功率掃頻法測(cè)試標(biāo)簽貼于藥瓶時(shí)的讀靈敏度,進(jìn)一步可推算出標(biāo)簽在實(shí)際場(chǎng)景中應(yīng)用時(shí)的讀距。圖3.4為掃頻法測(cè)試的標(biāo)簽實(shí)際應(yīng)用中的讀靈敏度。由靈敏度曲線(xiàn)圖可知最佳靈敏度頻段在895-920MHz,可滿(mǎn)足目標(biāo)頻帶應(yīng)用,且靈敏度達(dá)應(yīng)用要求。再通過(guò)模擬應(yīng)用場(chǎng)景進(jìn)行藥品盤(pán)點(diǎn)驗(yàn)證確認(rèn)真實(shí)應(yīng)用符合性。
圖3.4
4天線(xiàn)匹配性的測(cè)量
標(biāo)簽天線(xiàn)會(huì)因加工工藝的偏差而產(chǎn)生參數(shù)偏差,芯片在綁定工藝中也會(huì)因綁定工藝產(chǎn)生不同的分布電容值,所以標(biāo)簽天線(xiàn)與芯片的匹配性往往與設(shè)計(jì)存在一定偏差。為了優(yōu)化匹配性,通常還要做匹配性測(cè)量。匹配性測(cè)量區(qū)別于標(biāo)簽性能測(cè)量,雖然測(cè)量匹配性的目的是為了優(yōu)化標(biāo)簽性能,同時(shí)通過(guò)測(cè)量標(biāo)簽的性能也可以反應(yīng)出天線(xiàn)的匹配性,但匹配性測(cè)量更具有針對(duì)性,可以通過(guò)匹配性測(cè)量指導(dǎo)設(shè)計(jì)及工藝優(yōu)化方向。
圖4.1
如圖4.1所示電路原理圖是用于HF標(biāo)簽匹配性測(cè)量的測(cè)試選件電路,使用亥姆霍茲雙線(xiàn)圈測(cè)試技術(shù),
不僅可以測(cè)量標(biāo)簽諧振頻率還可以測(cè)量出磁偶極矩和Q值。圖4.2為一款HF標(biāo)簽產(chǎn)品匹配性能測(cè)試照片,可清楚地反應(yīng)產(chǎn)品諧振頻率及磁偶極矩大小。
圖4.2
UHF標(biāo)簽可使用2.3.2中所述的磁探針耦合功率測(cè)試法。磁探針耦合功率測(cè)試法不僅可以對(duì)天線(xiàn)進(jìn)行測(cè)試,也可以用于標(biāo)簽測(cè)試??梢郧宄胤磻?yīng)出標(biāo)簽諧振頻率,可以通過(guò)諧振頻率進(jìn)一步確定阻抗匹配情況及設(shè)計(jì)優(yōu)化調(diào)整。
由磁探針耦合功率測(cè)試圖譜知,標(biāo)簽諧振頻率與天線(xiàn)芯片并聯(lián)輸入阻抗最大值相對(duì)應(yīng)??捎商炀€(xiàn)輸入阻抗、芯片輸入阻抗及并聯(lián)輸入阻抗的關(guān)系,通過(guò)推算值確定匹配系數(shù)。另外附以由靈敏度測(cè)試曲線(xiàn)圖,可確認(rèn)匹配設(shè)計(jì)調(diào)整方向,優(yōu)化匹配值,從而提高標(biāo)簽性能。
5結(jié)束語(yǔ)
應(yīng)用于復(fù)雜介質(zhì)環(huán)境下RFID標(biāo)簽,只要掌握了適合的設(shè)計(jì)方法,不僅易于達(dá)到預(yù)期的設(shè)計(jì)目標(biāo),還會(huì)使原本復(fù)雜的工作變得簡(jiǎn)單化,設(shè)計(jì)目標(biāo)、設(shè)計(jì)周期、設(shè)計(jì)成本透明化。不要再通過(guò)制作一大堆各種形狀天線(xiàn)通過(guò)性能測(cè)試或試驗(yàn),來(lái)選擇適合的天線(xiàn)了,因?yàn)槲覀円呀?jīng)知道什么樣的天線(xiàn)才是適合的。
評(píng)論
查看更多