上面一幅圖還顯示了其他一些信息。標識了“基準線(Baseline Plot)”的綠線是分析儀的固有EVM噪聲。它的EVM約為1%,遠遠優于所測壓縮區中功率放大器的EVM。
在這個測量例子中,分析儀在大約40秒的時間內進行了4020次精確的EVM測量。
頻率以10MHz為步長從400MHz變化到2.5GHz。這個實驗中包含211個頻率測量步長(即測量點),每個步長的測量耗時約220ms。射頻輸入功率穩定在-30dBm。 直流偏壓保持不變。同樣,調制信號是8PSK的EDGE信號,對每個頻率步長取20次測量結果的平均值。
EVM與射頻頻率關系給出了更詳細的測量結果。下面的一幅圖給出了放大器增益與頻率之間的關系(藍線),該圖表明在400~500MHz的頻率范圍內,增益約為19.5dB,而在高頻下增益大幅度衰減,在2.5GHz下約為10dB。
上面的一幅圖給出了EVM與頻率之間的關系。該圖表明EVM并不隨頻率而衰減。
而且,分析儀固有的EVM噪聲相比功率放大器的EVM性能一樣好,或者好得多。
這里,分析儀在大約46秒的時間內進行了4220次精確的EVM測量。
在這個例子中,DUT在其頻率范圍內都能夠提供很好的調制質量。由于EDGE接收器不僅能夠檢測相位調制,即使是在幅值下降的情況下也仍然能夠正確解調信號。EDGE使用8PSK調制信號,表明,它對EVM下降的敏感性較低。
雖然沒有給出測試結果,但是我們必須在一定的偏壓范圍內對功率放大器的EVM進行特征分析,以決定EVM在哪個位置達到無法接受的水平。這對于將要用于移動產品中的器件尤其重要。當EVM達到阻止接收器正確解調發射信號的水平時,這時的偏壓值決定了移動設備必須關機的電池電壓。產品生產過程中必須檢驗在規定的電池低閾值電平之上移動設備是否仍然能夠正常工作。
更復雜的是測量OFDM傳輸的EVM性能,OFDM傳輸實際上是一組工作在不同頻率下的副載波,每個副載波傳輸一個唯一的符號,而且同時進行傳輸。這種調制方式將產生多個星圖,使用多種調制技術。在任意時間點上,根據傳輸中各個符號狀態的相位,組合的符號狀態可能產生非常大或者非常小的功率輸出。這就是設置功率放大器工作點盡可能減少功率放大器在增益壓縮區內工作的關鍵所在。正如EVM 與功率之間關系的分析結果所示,工作在增益壓縮區會嚴重降低 EVM和調制質量。
SDR的優勢
在SDR中,快速而強大的數字處理電路取代了傳統的模擬電路。由于可以通過更改固件而不是硬連線電路來改變測量功能,因此這種設計更加靈活。基于SDR架構的產品也更加小巧、更加可靠,成本更低。
對測試成本的影響
除了能夠提高測量質量之外,采用SDR架構的測試儀器還有很多方法可以降低測試的成本。
首先,測量時間縮短。先進的數字架構能夠加快測量速度,而專門的合成器電路則加快了調諧時間。如果VSG和VSA采用相同的架構并采用協同工作的設計方式,那么系統集成時間也隨之縮短了。
同時,儀器靈活的數字架構意味著可以通過軟件的方式增加新的測量功能,而不用改動硬件。
結語
功率放大器和其他元件的相位和幅值失真直接影響著通信質量。EVM是衡量通信質量的一項關鍵指標,它的主要優勢在于,測量速度比BER 測試更快,相比眼圖或BER測試能夠提供更多的診斷信息。但是,EVM不是僅僅一個數值,而是工作功率大小、工作頻率和直流偏壓的函數。此外,在OFDM 傳輸中,EVM是由多個信號組合而成。因此,必須在一定的參數范圍內對發射器(或功率放大器)的性能進行特征分析和測試,以確保設備能夠使用戶獲得可靠、正常工作。
新一代射頻儀器,例如吉時利的射頻測試系列儀器,采用了數字架構和SDR等創新技術,兼容已有的和新興的高產能傳輸技術。這使得這類儀器能夠實現很高的測量精度,同時大大提高了儀器的性價比,降低了測試成本。
評論
查看更多