在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

電子發燒友App

硬聲App

0
  • 聊天消息
  • 系統消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發帖/加入社區
創作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

電子發燒友網>vr|ar|虛擬現實>USPTO公布蘋果AR/VR新專利_基于毫米波無線通訊系統的多人互動

USPTO公布蘋果AR/VR新專利_基于毫米波無線通訊系統的多人互動

收藏

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網站授權轉載。文章觀點僅代表作者本人,不代表電子發燒友網立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規問題,請聯系本站處理。 舉報投訴

評論

查看更多

相關推薦

蘋果通過VR頭戴專利,設計與Google類似

美國專利及商標局(USPTO)日前通過了蘋果的一項頭戴設備專利,設計概念與 Google 的 Daydream、三星的 Galaxy Gear VR 類似,都是將手機結合到類似眼鏡的頭戴設備,然后借由手機軟件呈現 VRAR 影像。
2016-11-09 10:42:34433

24GHz毫米波雷達系統

誰做過汽車24GHz毫米波雷達系統,有沒有關于微帶貼片天線的技術資料,郵箱:junxin.yu@kuwe.com.cn 謝謝!
2018-03-12 09:48:35

5G毫米波無線接入系統介紹

與應用,如第二代行動通訊(2G)、第三代行動通訊(3G)、第四代行動通訊(4G)、藍牙、無線區域網絡等,要再找到能夠支持更大容量、更高傳輸速率的頻寬越來越不容易。因此,目前全世界大廠對于5G使用毫米波頻段
2019-07-11 06:52:45

5G毫米波天線的最優技術選擇

我們將考察一個簡單的大規模天線陣列示例,借以探討毫米波無線電的最優技術選擇。現在深入查看毫米波系統無線電部分的框圖,可以看到一個經典超外差結構完成微波信號到數字信號的變換,然后連接到多路射頻信號處理
2019-06-12 06:55:46

5G毫米波是如何引入的?毫米波有哪些致命弱點?

5G毫米波是如何引入的?毫米波有哪些致命弱點?5G的超高下載速率是怎么做到的?5G毫米波是怎么揚長和避短的?
2021-06-17 07:23:56

5G毫米波有哪些優勢?

的第三個優勢是可實現極低時延。5G毫米波系統空口時隙長度是目前主流5G中低頻系統的1/4,空口時延顯著降低,是滿足5G空口時延小于1ms的有力保證,可實現5G網絡對工業互聯網、AR/VR、云游戲、實時
2023-05-05 10:49:47

5G毫米波終端大規模天線技術及測試方案介紹

【摘要】本文首先介紹了全球毫米波頻譜劃分情況,然后通過對毫米波特性的分析,總結了毫米波終端將面臨的技術挑戰,著重介紹了終端側大規模天線技術、毫米波射頻前端技術的研究進展,并根據毫米波終端的特點分析了
2019-07-18 08:04:55

5G毫米波通信系統的開發

。預計在2017年底前完成各項新型無線接入技術標準的提案討論,并預計在2018年年中完成phase-1涵蓋至30或40 GHz毫米波頻段;2019年年底完成phase-2涵蓋至100 GHz毫米波頻段之第五代移動通信標準的制定。
2019-07-10 07:46:56

5G原型演示系統毫米波MIMO技術要哪些特性?

在目前大部分5G原型演示系統中,都采用毫米波MIMO技術,而這種技術對于毫米波天線開關也有著極為嚴苛的高標準。MACOM推出SMT封裝的MASW-011098毫米波天線開關利用該公司專利的砷化鋁鎵
2019-02-15 10:04:31

5G干貨|全面認識毫米波頻譜與技術

的電磁,通常來說就是頻率在30GHz-300GHz之間的電磁。是5G通訊中所使用的主要頻段之一。二、毫米波的優缺點1、毫米波的優勢:1)極寬的帶寬。通常認為毫米波頻率范圍為26.5~300GHz
2020-03-12 14:10:38

5G時代的挑戰,毫米波解決方案的測試和驗證設計

模擬器的架構應用于毫米波5G系統時,其構建所涉及的計算復雜性和成本是難以估量和實現的。MilliLabs基于其專利架構開發了一套全新的適用于5G毫米波系統的信道模擬仿真系統。該模擬器集成了毫米波信道傳輸
2018-07-23 10:51:32

VR BOX out? AR BOX能否逆襲

。   今年以來,AR的熱度逐漸上升,作為全球通訊巨頭的華為也趨之若鶩。華為近期宣布,已在5G、人工智能、VR/AR等前沿技術領域積極布局,致力于實現智能終端體驗的跨越式提升。無獨有偶,蘋果CEO蒂
2017-05-16 09:28:28

毫米波/激光/超聲波雷達的區別是什么?

毫米波/激光/超聲波雷達的區別是什么?
2021-09-29 06:23:42

毫米波無線電的最優技術選擇探討

波束賦形框圖本文將考察一個簡單的大規模天線陣列示例,借以探討毫米波無線電的最優技術選擇。現在深入查看毫米波系統無線電部分的框圖,我們看到一個經典超外差結構完成微波信號到數字信號的變換, 然后連接到多路
2019-07-11 07:57:45

毫米波MIMO天線開關對5G通信的意義

SMT封裝的MASW-011098毫米波天線開關利用該公司專利的砷化鋁鎵(AlGaAs)技術工藝,為5G演示系統實現更高的單元件功率比;同時提供靈活的偏置選項,以確保更大的整體使用方便
2019-06-19 06:58:04

毫米波為什么這么重要?

毫米波究竟是什么,為什么這么重要?
2020-12-03 07:53:53

毫米波傳感器是如何實現邊緣智能的?

毫米波傳感器是如何實現邊緣智能的?片上處理如何使毫米波傳感器根據其特征實時識別和分類目標?
2021-06-17 06:43:35

毫米波傳感器的資料解讀

中保持生產力,如圖1所示。圖1:毫米波(mmWave)傳感有助于監控機器周圍區域,實現實時事件管理TI毫米波傳感器如何在工廠實現高級智能化德州儀器(TI)的毫米波(mmWave)傳感器能夠利用集成
2022-11-08 06:54:12

毫米波傳感器解決了入口系統設計人員面臨的哪些挑戰

德州儀器毫米波傳感器解決了入口系統設計人員面臨的主要挑戰。毫米波傳感器有助于解決自動滑動門、停車路障和工業/車庫門的主要挑戰,如圖1所示。德州儀器毫米波(mmWave)傳感器解決了入口系統設計人
2022-11-08 07:13:21

毫米波應用的應用,四路毫米波空間功率合成技術介紹

增進大家對毫米波的認識。如果你對本文內容具有興趣,不妨繼續往下閱讀哦。一、引言大功率毫米波源是毫米波雷達、通訊、干擾機、精確武器制導系統中發射前端的核心部件。固態器件以直流電壓低、可靠性高、抗沖擊性能強
2020-11-05 09:43:08

毫米波技術在5G及其演進中的作用是什么

  本文對毫米波技術在 5G 及其演進中的作用進行了簡要概述。首先,分析了目前 5G 商用毫米波大規模 MIMO 系統的基本架構和主要問題,同時介紹了高性能的全數字多波束架構;其次,探討了毫米波技術
2021-03-08 08:40:30

毫米波技術基礎

特性中的每一種。自由空間路徑損失毫米波無線電頻率(RF)通信的一個局限性是用于兩天線間直接視線通信的自由空間路徑損耗(FSPL)。FSPL 與波長的平方成反比,由下列公式給出:FSPL = \\left
2022-07-29 22:43:59

毫米波技術如何為自主機器人提供邊緣智能

本文討論毫米波技術如何為自主機器人提供邊緣智能,使傳感器能夠做出實時決策,以減緩或停止機器人,并確保其在工業機器人應用中的持續性能。 TI毫米波傳感器可用于旨在幫助工業機器人避免碰撞的系統
2022-11-09 08:08:49

毫米波技術的發展進程

毫米波元器件的尺寸要小得多。因此毫米波系統更容易小型化。 由于毫米波的這些特點,加上在電子對抗中擴展頻段是取得成功的重要手段。毫米波技術和應用得到了迅速的發展。
2019-07-03 08:13:34

毫米波收發器的接口不同

的程度,當我們看到這些相控陣天線時,我們不再有機會找到連接器,因為極小的元件尺寸使得“連接器”的概念幾何上不切實際。頻率越高,尺寸越小,我們就越不可能找到與之配合的連接器。這種無連接器接口的發展是無線(OTA)測試的核心。這是毫米波頻率的無線電發展需要額外關注和注意的另一個例子。
2018-07-27 16:30:33

毫米波是什么

毫米波是什么毫米波移動化頻譜的另一端:6 GHz以下頻段
2021-01-28 07:08:27

毫米波是什么?其特點有哪些?

5G如何實現如此高的傳輸速率呢?毫米波是什么?其特點有哪些?
2021-05-06 06:22:29

毫米波組件的發展趨勢

的測量能力提高和功能增強因此也有了保障。由于設計和測量方法變得愈加高效,毫米波設計的成本效益越來越高,被許多人考慮作為各種應用的解決方案,覆蓋了從汽車巡航控制系統和機場威脅檢測成像系統到高數據速率的個人
2019-06-24 08:21:24

毫米波終端技術實現挑戰及測試方案

隨著移動通信的迅猛發展,低頻段頻譜資源的開發已經非常成熟,剩余的低頻段頻譜資源已經不能滿足5G時代10Gbps的峰值速率需求,因此未來5G系統需要在毫米波頻段上尋找可用的頻譜資源。作為5G關鍵技術
2021-01-08 07:49:38

毫米波雷達具體有什么作用?

毫米波雷達的作用和有效距離式多少?是否可以用于探測人體生物電信號?
2021-12-18 09:56:13

毫米波雷達工作原理,雷達感應模塊技術,有什么優勢呢?

;多普勒頻移大,測量相對速度的精度提高。雷達為利用無線電回波以探測目標方向和距離的一種裝置,利用無線電探向與測距。毫米波,是工作在毫米波波段,波長在1~10mm之間的電磁毫米波的波長介于微波和厘米之間
2021-09-22 16:17:32

毫米波雷達感知技術搭建車路協同系統的可行性

隨著車路協同系統技術的研究與發展,感知設備的可靠性、穩定性、高性價比、可大規模部署等要求被提出來。而毫米波雷達正是滿足這一要求的器件。介紹了一種基于智能網聯平臺的車路協同的基本組成與架構,闡述其在
2020-07-01 14:16:38

毫米波雷達方案對比

角度看,24GHz雷達與77GHz雷達都是處于毫米波的頻段,本質上并沒有形成大的區別。而根據的傳播理論,在無線通信系統中,頻率較高的信號比頻率較低的信號容易穿透建筑物,而頻率越低,波長越長,繞射能力
2018-08-04 09:16:48

毫米波雷達是什么?

所謂的毫米波無線電波中的一段,我們把波長為1~10毫米的電磁毫米波,它位于微波與遠紅外相交疊的波長范圍,因而兼有兩種波譜的特點。毫米波的理論和技術分別是微波向高頻的延伸和光波向低頻的發展。
2019-08-02 08:49:32

毫米波雷達的特點是什么

毫米波雷達的特點、優點、缺點;毫米波雷達測距原理,測速原理,角速度測量原理;毫米波雷達系統架構。 毫米波雷達:ADAS/自動駕駛核心傳感器毫米波的波長介于厘米和光波之間, 因此毫米波兼有微波制導
2021-07-30 08:05:28

毫米波雷達(一)

算法三部分。在現有的產品中,雷達后端算法的專利授權費用約占成本的50%,射頻前端約占成本的40%,信號處理系統約占成本的10%。  1、射頻前端  射頻前端通過發射和接收毫米波,得到中頻信號,從中
2019-12-16 11:09:32

ADAS系統無人駕駛的眼睛毫米波雷達

(30~70m),主要應用于汽車前方和兩側。毫米波雷達主要包括雷達射頻前端、信號處理系統、后端算法三部分。在現有的產品中,雷達后端算法的專利授權費用約占成本的50%,射頻前端約占成本的40%,信號
2023-04-18 11:42:23

Lora無線通訊是什么?Lora無線通訊有哪些優勢

Lora無線通訊是什么?Lora無線通訊有哪些優勢?常見的通訊技術有哪幾種呢?各有什么優缺點呢?
2022-02-21 06:41:04

【威雅利 汽車】蘋果最新專利曝光,要把VRAR帶進自動駕駛汽車

據外媒報道,蘋果公司一項最新專利申請近日曝光,該公司正在研發一種靈巧的虛擬現實(VR)系統,將用于自動駕駛汽車,緩解乘員的暈車癥狀。在最近幾周里,美國專利和商標局公布蘋果的多項虛擬現實技術專利,但
2018-04-24 17:05:48

一種兩次變頻法的毫米波發射端上變頻方案設計

還可提高系統的隱蔽性和抗干擾能力。可通過構建基于軟件無線電原理的毫米波通用硬件平臺將其系統化,而基于軟件無線電原理的毫米波硬件平臺,要求系統的各個組成部分具有可編程、靈活以及小型化的特點。在最大程度
2019-06-19 08:27:35

了解毫米波 -- 之一

),做一個討論。探討略顯神秘的毫米波系統。 什么是毫米波無線通信是基于電磁所進行的通信技術。為了使不同的通信設備傳輸互不干擾,國際電信聯盟等無線電管理機構對無線頻譜的使用做了劃分,將不同頻率的頻譜資源
2023-05-05 11:22:19

了解毫米波“移相”--之三

,在接收通路中,采用了4通道相控陣列的方式進行設計 。 圖:24GHz車載毫米波相控陣雷達系統 衛星通信 衛星通信是現在無線通信研究的一大熱點,尤其是低軌衛星領域,由于其低延時、大帶寬的特性,可以
2023-05-08 10:54:25

什么是5G毫米波和OTA測試?

背景 毫米波為波長1mm-10mm,頻率范圍為30GHz-300GHz的電磁,與6GHz以下的頻段相比,毫米波帶寬更大、空口時延低且具有靈活彈性空口配置等優勢,能夠更好地滿足當前快速發展的無線
2021-11-19 08:00:00

位到毫米波無線電介紹

雙通道 AD/DA轉換器 AD9172/AD9208 應用于毫米波無線電:從位到毫米波、從毫米波到位
2021-02-19 06:36:03

低相噪毫米波頻率合成器設計

(DDS)技術,提出毫米波頻率合成器的設計方案。進行方案系統實驗,結果表明,相位噪聲為-85dBc/Hz@10kHz,提升了整個毫米波通信系統的性能。【關鍵詞】:毫米波;;頻率合成;;相位噪聲;;頻率
2010-04-22 11:47:22

光載毫米波無線電通信技術的發展趨勢

GHz)擴展的需求日益迫切。將光的大帶寬優勢和毫米波無線接入的靈活性結合起來的毫米波光載無線(MM-RoF)系統具有體積小、重量輕、成本低、損耗小、抗電磁干擾及傳輸質量高等優點,可解決傳統微波傳輸
2019-06-19 07:03:20

關于電磁毫米波雷達之間的影響

毫米波雷達探測人體生命體征時遇到電磁發射源正在工作,雷達回波是否會受到干擾?是不是普通的電磁都會對毫米波雷達造成一定干擾?有大佬知道的嗎?可以解答一下不?
2022-04-23 18:43:10

分享一個不錯的泰克汽車毫米波雷達測試解決方案

汽車毫米波雷達的工作原理是什么?汽車毫米波雷達的測試挑戰有哪些?泰克汽車毫米波雷達測試解決方案
2021-06-17 09:02:39

哪些毫米波頻率會被5G采用呢?

,致力于解決IMT-2020提出的關鍵績效指標。第二階段的焦點是高達100GHz的頻率。   為了在毫米波頻率標準化上達成全球一致,ITU在去年11月舉行的世界無線電通信大會(WRC-15)上公布了一
2023-05-05 09:52:51

國內外典型毫米波人體安檢系統發展

毫米隱匿武器探測系統可以分為無源系統和有源系統兩大類。無源系統,即毫米波輻射計,它通過測量并顯示人體散射或反射的毫米波輻射信號來對人體進行安全檢測。有源系統則需要一個合適的輻射源來照射物體,入射
2019-05-28 07:18:09

基于毫米波傳感器的自動泊車系統該怎樣去設計?

什么是毫米波雷達?為什么自動駕駛要用到這么多種類的傳感器?基于毫米波傳感器的自動泊車系統該怎樣去設計?
2021-06-16 07:28:47

基于ARM的毫米波天線自動對準平臺系統

毫米波中繼通信設備中,為提高對準精度,縮短對準時間,滿足快速反應的要求,并結合毫米波波瓣窄,方向性強的特點,創造性地提出了毫米波天線自動對準平臺系統的設計方案。在天線對準過程中,將復雜的的空間搜索
2019-06-11 06:24:10

基于DSP的毫米波主被動復合探測器目標識別系統設計【回映分享】

本文由回映電子整理分享,歡迎工程老獅們參與學習與評論 毫米波主被動復合探測系統毫米波雷達和輻射計相結合,充分利用系統主動測距和目標被動輻射特性來完成目標識別及定位,大大改善了毫米波探測器的性能
2021-12-30 10:36:54

如何應對毫米波測試的挑戰?

如何應對毫米波測試的挑戰?
2021-05-10 06:44:10

應對毫米波測試的挑戰

的關鍵的設備之一,配合信號源和天線,可以用于無線信道的衰落特性測試。在低頻段,常用臺式頻譜儀和天線組成測試系統。天線一般放置在轉臺上,臺式頻譜儀放置在測試臺上,兩者之間使用同軸線連接。然而在毫米波頻段
2017-04-14 11:57:45

怎樣去設計一種毫米波JRC系統的波形

聯合雷達通信(JRC)模型有哪些優點?怎樣去設計一種毫米波JRC系統的波形?
2021-10-08 07:54:25

有關毫米波雷達的檢測和角度測量

毫米波雷達是什么?毫米波雷達的基本特性有哪些呢?
2021-11-10 07:15:23

求推薦毫米波雷達

無人車避障系統射擊需要用到毫米波雷達,請問選擇哪個廠家,性能類型如何?價格10000左右吧
2018-12-25 22:13:18

淺析車載毫米波雷達

的不同應用雷達為主,介紹不同功能的車載毫米波雷達。下面的內容會詳細介紹這四種功能的車載雷達。 BSD (Blind Spot Detection —— 盲點偵測系統)通過毫米波雷達探測兩側的后視鏡盲區中的超車
2019-09-19 09:05:02

漫談車載毫米波雷達歷史

的應用可以追溯到80年代初期。一些歐美國家的大學和研究機構逐步開始車載毫米波雷達技術的研究。80年代中期,歐洲制定“歐洲高效安全交通系統計劃”(PROME THE US),引發了歐洲、日本等汽車大國的雷達
2022-03-09 10:24:55

稜研科技與 NI 聯合發表毫米波通信原型設計解決方案

2023-02-21 臺北訊圖說:稜研科技與NI共同推出毫米波通訊原型設計解決方案,整合 NI Ettus USRP X410 與稜研科技 UD Box 5G 變頻器和 BBox 5G 波束成形器
2023-02-21 13:44:53

請問怎樣去設計一種非線性微波毫米波電路?

什么是非線性微波毫米波電路?怎樣去設計一種非線性微波毫米波電路?
2021-06-22 06:54:40

車載毫米波雷達的原理是什么?

毫米波雷達是測量被測物體相對距離、現對速度、方位的高精度傳感器,早期被應用于軍事領域,隨著雷達技術的發展與進步,毫米波雷達傳感器開始應用于汽車電子、無人機、智能交通等多個領域。
2019-08-07 08:01:28

車載毫米波雷達的技術原理與發展

作為智能汽車和智慧交通的重要組成,車用毫米波雷達的相關頻率劃分受到國家無線電管理部門的密切關注和高度重視。2016年,國內正式啟動國際電聯智能交通全球頻率統一(WRC-19 1.12)議題工作。工業
2019-05-10 06:20:23

采用TI毫米波技術的毫米波傳感器讓人們看的更清晰

毫米波傳感器,可以幫助我們看到具有詳細輪廓的物體并對其進行分類,實現“眼見為實”。想象一下,一個靈敏的機器即使在充滿灰塵、黑暗、霧氣或下雨等惡劣條件下也能避開障礙;一個安全系統,可以透過墻壁看到
2019-03-13 06:45:11

雷達傳感器模塊,智能存在感應方案,毫米波雷達工作原理

是為了實現盲點監測和定距巡航。毫米波實質上就是電磁毫米波的頻段比較特殊,其頻率高于無線電,低于可見光和紅外線。當目標向雷達天線靠近時,反射信號頻率將高于發射機頻率;反之,當目標遠離天線而去時,反射信號
2021-10-28 15:14:21

毫米波無線通信收發系統

采樣率為3.2Gsps。該系統可用于高速視頻傳輸、毫米波室內定位、毫米波無線回傳,通過板級擴展可實現MIMO無線傳輸,單端可實現毫米波數字陣列波束掃描。另外該系統
2022-09-28 17:42:24

[3.4.2]--毫米波感知

毫米波
jf_60701476發布于 2022-11-30 14:57:27

深圳市易感人工智能毫米波雷達展示# 毫米波雷達應用

毫米波雷達
jf_87932468發布于 2023-05-20 15:05:43

蘋果5G毫米波天線專利推出,將用于5G iDevices設計

蘋果在其專利背景中指出,未來可能需要支持毫米波頻段的無線通信。毫米波的傳播損耗大,蘋果希望通過毫米波八木天線來克服這些技術難點。
2018-03-31 11:08:147935

微軟發布新專利,有望克服AR / VR設備視野過小的問題

近年來,虛擬現實(VR)和增強現實(AR)的改變已經被炒得火熱。遺憾的是,當前技術的設備端用戶體驗仍不夠友好,尤其是視野(FOV)方面的限制。好消息是,7月19號的時候,美國商標專利局(USPTO公布了一份來自微軟的新專利。由描述可知,其有望克服AR / VR設備視野過小的問題。
2018-10-24 09:19:121301

蘋果未來的未來ARVR眼鏡近眼顯示方案

USPTO公布蘋果一項全新的智能眼鏡專利專利中涉及到的光學系統部分,也就是說蘋果未來的AR眼鏡或AR/VR混合眼鏡中近眼顯示方案。 據青亭網了解,該專利USPTO專利號為20190377181
2020-10-20 13:49:272678

蘋果申請申請多份AR/VR技術專利

日前美國專利商標局公布了數份來自蘋果專利申請,其中涉及能夠顯示VR/AR/MR內容的未來頭戴式設備。
2020-12-18 10:22:53635

蘋果AR/VR可穿戴手指操控裝置設計專利搶先看

近日曝光的一項USPTO專利文件,揭示了蘋果正在研究的一款AR/VR手指操控裝置。PatentedApple指出:專利描述了一款帶有一系列傳感器/觸覺反饋的指尖裝置,能夠為AR/VR頭顯用戶帶來獨特的無線操控體驗。
2021-03-01 10:19:531683

蘋果申請智能戒指專利,可用于ARVR和MR應用

據外媒報道,美國專利商標局日前公布蘋果一項涉及「智能戒指」的專利申請,可用于ARVR和MR應用。
2021-03-15 14:21:383599

歌爾VR/AR大放異彩 華為VR相關專利公布 蘋果改善頭戴式AR/VR體驗

VR/AR正在歌爾目前成長階段大放異彩。 華為VR環形彈幕專利公布蘋果改善基于PC無線渲染的頭戴式AR/VR體驗。 全球AR/VR頭顯出貨達1123萬臺。
2022-03-30 16:44:264214

已全部加載完成

主站蜘蛛池模板: 天堂资源在线种子资源| 四虎官网| 亚洲国产欧美在线人成aaa | 免费看污黄视频软件| 久久大伊人| 成人在线91| 天天添天天操| 国产在线免| 91av免费| 永久在线观看www免费视频| 婷婷五月五| 免费看黄的视频软件| 国产三级a三级三级野外| 新版天堂资源中文在线| 久久天天躁狠狠躁夜夜呲| 日木69xxxhd| 韩国三级理论在线看中文字幕| 狠狠色噜狠狠狠狠色综合久| 国产gaysexchina男同men1068| 午夜亚洲国产精品福利| 久操视频在线观看| 91国在线啪精品一区| 九九热免费在线观看| 性生活一区| 免费人成激情视频在线观看冫 | 国产精品永久免费| 天天综合网在线| 99久久久精品免费观看国产| 一区二区三区高清在线| 一级特黄女人生活片| 欧美三级影院| 站长工具天天爽视频| 久久久久国产精品免费免费| 在线精品国产成人综合第一页| 五月天情网| 国产五月| 免费在线观看黄| 男男gay高h文| 欧美一级欧美三级在线观看| 丁香花在线视频| 国产伦精品一区二区三区免|