在线观看www成人影院-在线观看www日本免费网站-在线观看www视频-在线观看操-欧美18在线-欧美1级

您好,歡迎來電子發燒友網! ,新用戶?[免費注冊]

您的位置:電子發燒友網>電子元器件>發光二極管>

Protect LED driver in backlit displays

2011年02月02日 12:22 電子發燒友網 作者:大毛 用戶評論(0

Several circuit ideas are presented for protecting a boost-converter LED driver when the LEDs are disconnected. (Without protection, the driver output can destroy the external MOSFET and Schottky diode.) An LED-driver IC (MAX1698) and comparator (MAX9060 or MAX9028) are included.

LEDs often serve as the light source in a backlighted display, and they usually operate with a low battery voltage such as that produced by two NiCd cells or one lithium-ion cell. An IC (MAX1698/MAX1698A) can simplify these applications by boosting the battery voltage to a level suitable for LEDs. The chip also regulates LED current, and includes brightness-control circuitry for dimming the LEDs. The LED array and IC should always remain connected (Figure 1).

Figure 1. This schematic illustrates the application of a typical LED-backlight driver.
Figure 1. This schematic illustrates the application of a typical LED-backlight driver.

If you disconnect the LED array from the IC, the loss of LED current in RFB allows the voltage at FB (pin 6) to drop below the internal current-controller threshold, causing the device to begin increasing its output voltage. Unfortunately, the MAX1698 (like many similar devices) cannot sense the disconnected-LED condition, so its output voltage increases to a level that can destroy the external MOSFET and Schottky diode. This problem is present for any boost converter; not just LED drivers.

The simplest solution is a zener diode connected across the LEDs (Figure 2). A 16V zener works fine in this case (the four white LEDs drop about 12V), but it must be capable of dissipating power. When the LEDs are drawing 100mA or more and someone disconnects them, the zener must dissipate ~1/6W. A possible alternative to this circuit is shown in Figure 3.

Figure 2. The simplest protection for the Figure 1 circuit adds just a zener diode.
Figure 2. The simplest protection for the Figure 1 circuit adds just a zener diode.

Figure 3. Adding a zener diode and transistor to the Figure 1 circuit provides low-power protection for the MOSFET and Schottky diode.
Figure 3. Adding a zener diode and transistor to the Figure 1 circuit provides low-power protection for the MOSFET and Schottky diode.

It requires the addition of two resistors and one transistor, but the Figure 3 circuit doesn't dissipate extra power when the LEDs are disconnected. It also saves space—the zener can be a 0.5W device, and the resistor and BJT can be standard low-power devices available in small packages like the SOT23-3, or smaller. The circuit senses output voltage at the MOSFET drain, and deactivates the driver (MAX1698) by controlling its Shutdown input. You can choose a zener voltage that ensures this voltage is within the MOSFET's operating characteristics.

In other words, the circuit doesn't "work" except when a user removes the LED array. In that event the output voltage starts to rise, and when it reaches the zener voltage the circuit trips and shuts down the IC. As in shutdown mode, the inductor begins to discharge when the driver turns off the external MOSFET, which allows the output voltage to drop below the zener voltage and bring the driver out of shutdown. The driver re-starts, and if the LED array remains unconnected, the output voltage increases until it exceeds the zener voltage, and triggers the protection again.

Because the output voltage regulates around the zener voltage, this circuit does not generate a damaging current spike when the LED array is reconnected. To save battery energy, it also permits external control of the shutdown mode (using a microcontroller, for instance, as shown in Figure 3), to switch off the backlight array.

Another alternative is the circuit of Figure 4, which requires an additional comparator and three resistors. This approach also uses small, low-cost components and dissipates negligible power. It senses output voltage at the Schottky-diode cathode, and limits circuit operation to a voltage set by the resistor divider and the driver's VREF output (1.25V typical).

Figure 4. Better yet, this tiny comparator protects the Figure 1 circuit, dissipates little power, and requires little space on the pc board.
Figure 4. Better yet, this tiny comparator protects the Figure 1 circuit, dissipates little power, and requires little space on the pc board.

This protection circuit remains inactive until the LED array is removed, and (again) its operating voltages remain well within limits for the chosen MOSFET. The comparator should have an open-drain output (MAX9060/MAX9061 or MAX9028) to permit external control of the shutdown mode by a microcontroller—as before, to switch off the backlight array when needed.

The circuit also consumes less power, according to values selected for the resistor divider. (Its quiescent current is a few tens of microamps.) Last but not least, this circuit is smaller than the other two because the comparator comes in a tiny SOT23-5 package (MAX9060/MAX9061) or 1x1.52mm UCSP? package (MAX9028). All three circuits protect the external MOSFET and diode in an LED-backlight application, when the LED array is disconnected.

UCSP is a trademark of Maxim Integrated Products, Inc.

非常好我支持^.^

(2) 66.7%

不好我反對

(1) 33.3%

( 發表人:admin )

      發表評論

      用戶評論
      評價:好評中評差評

      發表評論,獲取積分! 請遵守相關規定!

      ?
      主站蜘蛛池模板: 一级片在线观看免费| xxx亚洲日本| 日本三级黄色| 欧美一级别| 久久综合久| 国产乱码精品一区二区三区四川人 | 欧美日韩在线成人看片a| 免费看欧美一级特黄a大片 | 亚欧免费视频| 色碰人色碰人视频| 免费精品一区二区三区在线观看| 激情五月婷婷在线| 在线免费国产视频| 欧美成人午夜毛片免费影院| 俄罗斯欧美色黄激情| 3344成年在线视频免费播放男男| 免费视频黄| 他也色在线| 久久99精品久久久久久园产越南| 俺来也久久| 久久午夜精品| 一区中文字幕| 亚洲地址一地址二地址三| 日韩啪啪片| 国产大乳美女挤奶视频| 天堂资源8中文最新版在线| 在线观看黄色的网站| 卡一卡二卡三国色天香永不失联| 天堂bt资源新版在线| 久久国产色| 天天干天天做天天射| 性xxxx黑人与亚洲| 中文天堂最新版www| 日本写真高清视频免费网站网| 国产偷窥女洗浴在线观看亚洲| 天天透天天干| 最猛91大神ben与女教师| 天堂a免费视频在线观看| 国产一级做a爰片久久毛片男| 天堂在线最新资源| 亚洲欧美视频二区|