精確而高性價(jià)比的測(cè)試對(duì)于確保LED器件的可靠性和質(zhì)量至關(guān)重要。LED測(cè)試在生產(chǎn)的不同階段具有不同類型的測(cè)試序列,例如設(shè)計(jì)研發(fā)階段的測(cè)試、生產(chǎn)過(guò)程中的晶圓級(jí)測(cè)試、以及封裝后的最終測(cè)試。本文著重探討電氣特征分析,而在適當(dāng)?shù)臅r(shí)候介紹部分光學(xué)測(cè)量技術(shù)。
LED測(cè)試在生產(chǎn)的不同階段具有不同類型的測(cè)試序列,例如設(shè)計(jì)研發(fā)階段的測(cè)試、生產(chǎn)過(guò)程中的晶圓級(jí)測(cè)試、以及封裝后的最終測(cè)試。LED的測(cè)試一般包含電氣和光學(xué)測(cè)量,而本文著重探討電氣特征分析,只在適當(dāng)?shù)臅r(shí)候介紹部分光學(xué)測(cè)量技術(shù)。圖1給出了典型二極管的電氣I-V曲線。完整的測(cè)試應(yīng)該包含大量的電壓值與對(duì)應(yīng)的電流工作點(diǎn),但是一般情況下有限的采樣點(diǎn)就足以測(cè)試出器件的品質(zhì)因數(shù)。
圖1:典型LED的直流I-V曲線和測(cè)試點(diǎn)
很多測(cè)試需要提供已知的電流然后測(cè)量電壓,而另外一些測(cè)試需要提供電壓然后測(cè)量產(chǎn)生的電流。因此,具有集成的、同步的源和測(cè)量功能的高速測(cè)試儀器對(duì)于這類測(cè)試是非常理想的。
正向電壓測(cè)試
在LED測(cè)試序列中,正向電壓(VF)測(cè)試檢驗(yàn)的是可見(jiàn)光LED上的正向工作電壓。當(dāng)在二極管上加載一個(gè)正向電流時(shí),它開(kāi)始導(dǎo)通。剛開(kāi)始在低電流下,二極管上的電壓降快速上升,但是隨著驅(qū)動(dòng)電流的增加,電壓斜率開(kāi)始變平。二極管一般工作在這個(gè)電壓相對(duì)恒定的區(qū)域。在這些工作條件下對(duì)二極管進(jìn)行測(cè)試也非常有用。VF測(cè)試需要提供一個(gè)已知的電流然后測(cè)量二極管上產(chǎn)生的電壓降。典型的測(cè)試電流范圍從幾十毫安到幾安,而產(chǎn)生的電壓大小通常在幾伏的范圍。有些制造商利用這種測(cè)試的結(jié)果進(jìn)行器件分揀,因?yàn)檎螂妷号cLED的色度(由色彩主波長(zhǎng)或者互補(bǔ)波長(zhǎng)及其純度共同表征的色彩品質(zhì))相關(guān)。
光學(xué)測(cè)試
正向偏置電流也用于光學(xué)測(cè)試,因?yàn)?a target="_blank">電子電流與發(fā)光的強(qiáng)弱密切相關(guān)。通過(guò)在待測(cè)器件附近放一個(gè)光電二極管或者累計(jì)球捕捉發(fā)出的光子可以測(cè)出光強(qiáng)度(optical power)。然后將光轉(zhuǎn)換成電流,利用安培計(jì)或者源測(cè)量?jī)x器的一個(gè)通道測(cè)量電流的大小。
在很多測(cè)試應(yīng)用中,二極管的電壓和發(fā)出的光可以利用大小固定的電流源同時(shí)測(cè)出來(lái)。此外,利用分光計(jì)可以在同樣大小的驅(qū)動(dòng)電流下測(cè)出諸如光譜輸出之類的詳細(xì)參數(shù)。
反向擊穿電壓測(cè)試
對(duì)LED加載一個(gè)反向偏置電流可以測(cè)出反向擊穿電壓(VR)。測(cè)試電流的大小應(yīng)該設(shè)置為當(dāng)電流稍微增加時(shí)測(cè)出的電壓值不再明顯增大的位置。當(dāng)電壓高于這個(gè)電壓值時(shí),反向偏置電流的大幅增加導(dǎo)致反向電壓變化不明顯。這個(gè)參數(shù)指標(biāo)通常是一個(gè)最小值。在測(cè)試VR時(shí)要在一定的時(shí)間內(nèi)加載一個(gè)小的反偏電流,然后測(cè)量LED上的電壓降。測(cè)量結(jié)果的大小范圍通常為幾十伏。
漏電流測(cè)試
一般地,漏電流(IL)的測(cè)量使用中等大小的電壓(幾伏到幾十伏)。漏電流測(cè)試測(cè)量的是當(dāng)加載的反向電壓低于擊穿電壓時(shí)LED上泄漏的小電流。在生產(chǎn)過(guò)程中確保漏流不超過(guò)一定的閾值是漏流測(cè)量的常用做法,也是隔離測(cè)量更普遍的做法。其中有兩個(gè)原因。第一,低電流測(cè)量需要較長(zhǎng)的穩(wěn)定時(shí)間,因此它們需要更長(zhǎng)的時(shí)間才能完成。第二,環(huán)境干擾和電噪聲對(duì)低值信號(hào)具有較大的影響,因此需要額外的屏蔽措施。這些額外的屏蔽措施增加了測(cè)試夾具的復(fù)雜性,并且可能干擾自動(dòng)機(jī)械手的操作。
智能儀器提升LED生產(chǎn)測(cè)試能力
過(guò)去,在很多LED生產(chǎn)測(cè)試系統(tǒng)中人們常常采用PC機(jī)控制測(cè)試的各個(gè)方面。換句話說(shuō),在測(cè)試序列的每個(gè)組成部分中,每個(gè)測(cè)試必須對(duì)信號(hào)源和測(cè)試儀器分別配置,執(zhí)行所需的操作,然后將數(shù)據(jù)返回給控制PC。控制PC然后進(jìn)行pass/fail判斷并執(zhí)行相應(yīng)的操作對(duì)DUT進(jìn)行分揀。發(fā)送和執(zhí)行的每條命令都浪費(fèi)了寶貴的測(cè)試時(shí)間,因此降低了處理能力。顯然,在這類以PC為中心的測(cè)試結(jié)構(gòu)中,大部分測(cè)試序列時(shí)間都被PC和測(cè)試儀器之間的通信所消耗了。
相反,當(dāng)前很多智能儀器,例如2600A系列數(shù)字源表,通過(guò)減少通信總線上的通信量,使得大幅提高復(fù)雜測(cè)試序列的能力成為可能。在這些儀器中,測(cè)試序列的主要部分嵌入在儀器內(nèi)部。測(cè)試腳本處理器(TSP)是一種全能的測(cè)試序列引擎,能夠利用內(nèi)置的pass/fail判據(jù)、數(shù)學(xué)和計(jì)算公式控制測(cè)試序列和數(shù)字I/O端口。TSP能夠?qū)⒂脩糇远x的測(cè)試序列保存在存儲(chǔ)器中然后根據(jù)命令執(zhí)行它。這樣就限制了測(cè)試序列中每一步的設(shè)置和配置時(shí)間,通過(guò)最大限度減少與PC和儀器的通信而提高了測(cè)試產(chǎn)能。這類儀器的編程過(guò)程相對(duì)簡(jiǎn)單:1)創(chuàng)建腳本;2)將腳本下載到儀器中;3)調(diào)用腳本執(zhí)行。對(duì)于2600A系列儀器,用戶可以利用儀器本身提供的Test Script Builder軟件編寫或者下載腳本,或者從用Visual Basic或LabVIEW等語(yǔ)言編寫的用戶應(yīng)用程序中下載到儀器中。
單LED器件測(cè)試系統(tǒng)
圖2是測(cè)試單個(gè)LED的測(cè)試系統(tǒng)簡(jiǎn)化模塊圖。對(duì)于自動(dòng)化測(cè)試,通常包含一臺(tái)PC和一個(gè)元件機(jī)械手(晶圓級(jí)測(cè)量需要一個(gè)探針臺(tái))。
在這個(gè)測(cè)試結(jié)構(gòu)中,PC機(jī)的主要作用是將測(cè)量數(shù)據(jù)保存在數(shù)據(jù)庫(kù)中用于資料記錄。第二個(gè)作用是針對(duì)不同的部件重新配置測(cè)試序列。2600A系列的獨(dú)特之處在于它們能夠獨(dú)立于PC控制器單獨(dú)工作。每臺(tái)儀器上內(nèi)嵌的TSP支持用戶編寫能夠在儀器本身上執(zhí)行的完整測(cè)試規(guī)劃。換句話說(shuō),用戶可以編寫完整的pass/fail測(cè)試序列腳本,無(wú)需儀器重編程即可通過(guò)儀器面板運(yùn)行它。
圖2:基于數(shù)字源表的單LED測(cè)試系統(tǒng)模塊圖
生產(chǎn)測(cè)試系統(tǒng)可以利用元件機(jī)械手將單個(gè)LED傳送到測(cè)試夾具上,進(jìn)行電氣接觸。該夾具屏蔽了環(huán)境光,并且安裝了光電探測(cè)器(PD)進(jìn)行光學(xué)測(cè)量。在如圖2所示的配置中,使用了一臺(tái)2602A型雙通道數(shù)字源表實(shí)現(xiàn)兩種連接。其中,源測(cè)量單元A(SMUA)為L(zhǎng)ED提供測(cè)試信號(hào)并測(cè)量其電響應(yīng),而SMUB在光學(xué)測(cè)量過(guò)程中用于監(jiān)測(cè)光電二極管。
測(cè)試序列在編程開(kāi)始時(shí)利用元件機(jī)械手的一條數(shù)字線作為“測(cè)試啟動(dòng)(SOT)”信號(hào)。當(dāng)數(shù)字源表檢測(cè)到這個(gè)SOT信號(hào)后,LED特征分析測(cè)試就開(kāi)始了。
在所有的電氣和光學(xué)測(cè)試都完成之后,系統(tǒng)為元件機(jī)械手設(shè)置一條標(biāo)志“測(cè)量完成”的數(shù)字線。此外,儀器本身的智能功能執(zhí)行所有的pass/fail操作,通過(guò)儀器上的數(shù)字I/O端口向元件機(jī)械手發(fā)送一條數(shù)字命令,根據(jù)pass/fail判據(jù)對(duì)LED進(jìn)行分揀。然后,可以設(shè)定兩個(gè)操作同時(shí)執(zhí)行:將數(shù)據(jù)傳輸?shù)絇C進(jìn)行統(tǒng)計(jì)過(guò)程控制,同時(shí)將一個(gè)新的DUT傳送到測(cè)試夾具上。
多器件/陣列的LED測(cè)試系統(tǒng)
在多器件測(cè)試情況下,例如涉及老化的測(cè)試,我們要在規(guī)定的時(shí)間內(nèi)同時(shí)測(cè)量多個(gè)部件。驅(qū)動(dòng)DUT通常需要連續(xù)的電流,但是多個(gè)光學(xué)探測(cè)器可以通過(guò)開(kāi)關(guān)系統(tǒng)復(fù)用一個(gè)電流計(jì)。用戶可以根據(jù)所測(cè)電流的動(dòng)態(tài)量程選擇合適的開(kāi)關(guān)系統(tǒng)和電流計(jì)。
多LED器件測(cè)試可以選擇多種類型的開(kāi)關(guān)。例如,3706型開(kāi)關(guān)/萬(wàn)用表具有6個(gè)開(kāi)關(guān)模塊插槽,因此它最多可支持576個(gè)復(fù)用通道或者2688個(gè)矩陣交叉點(diǎn)。與2600A系列儀器類似,它也內(nèi)置了板載TSP和TSP-Link設(shè)備間通信/觸發(fā)總線,利用這套總線可以快速而方便地將這些儀器集成到一個(gè)系統(tǒng)中。這種集成支持緊密同步的儀器間操作,并且能夠讓它們?cè)谝粋€(gè)測(cè)試腳本的控制下進(jìn)行操作。圖3給出了具有一個(gè)光電二極管通道的三LED器件測(cè)試系統(tǒng)結(jié)構(gòu)。
圖3:采用可擴(kuò)展2602A數(shù)字源表通道構(gòu)建LED陣列測(cè)試系統(tǒng)的模塊圖
最大限度減少LED測(cè)試誤差
LED生產(chǎn)測(cè)試中的常見(jiàn)測(cè)量誤差源包括引線電阻、漏電流、靜電干擾和光干擾,但是結(jié)自熱是最重要的誤差源之一。對(duì)結(jié)發(fā)熱最敏感的兩種測(cè)試是正向電壓測(cè)試和漏電流測(cè)試。當(dāng)半導(dǎo)體結(jié)發(fā)熱時(shí),電壓將會(huì)下降,更重要的是,在恒壓測(cè)試過(guò)程中漏電流會(huì)增大。因此,在不影響測(cè)量精度或穩(wěn)定性的情況下盡可能縮短測(cè)試時(shí)間是非常重要的。
具有板載測(cè)試腳本引擎的智能儀器能夠簡(jiǎn)化配置測(cè)量前器件的持溫時(shí)間(soak time)以及采集輸入信號(hào)的時(shí)間。在保溫時(shí)間內(nèi)所有的電路電容在測(cè)量開(kāi)始前穩(wěn)定下來(lái)。測(cè)量積分時(shí)間取決于電源線周期數(shù)(NPLC)。如果輸入電源是60Hz,那么1NPLC測(cè)量就需要1/60秒,即16.667ms。積分時(shí)間決定了ADC采集輸入信號(hào)的時(shí)間,它要在測(cè)量速度和精度之間進(jìn)行折中。
VF測(cè)試的典型保溫時(shí)間從不到幾百微秒到5毫秒,IL測(cè)試的保溫時(shí)間從5到20毫秒。通過(guò)利用這些極短的測(cè)試時(shí)間,就能夠減少由于結(jié)發(fā)熱導(dǎo)致的誤差。此外,通過(guò)執(zhí)行一系列測(cè)試并只檢驗(yàn)測(cè)試時(shí)間,可以對(duì)結(jié)發(fā)熱的特征進(jìn)行分析。
為了進(jìn)一步縮短測(cè)試時(shí)間,減少結(jié)自熱效應(yīng),2600A系列儀器支持脈沖操作。在這種模式下,它們能夠在指定的周期內(nèi)在輸出端產(chǎn)生精密的信號(hào)源。1微秒的脈寬分辨率能夠精確控制器件的加電時(shí)間。這類儀器在脈沖操作模式下還能夠輸出大大超出其直流能力的電流值。例如,2602A在6V下能夠輸出3A的直流電流。而在脈沖模式下,它能夠在20V下輸出10A的電流。