磁場測量在工業領域具有廣泛的應用,在磁場的脈沖量,開關量以及線性量的測量中,使用最為廣泛的是霍爾傳感器,由于其較低的品種繁多的產品以及較低的成本,使得霍爾傳感器在磁場測量領域具有較高的地位。隨著巨磁電阻(GMR)傳感器的成功研制,其優越的性能越來越受到人們的關注,使得GMR傳感器在傳統的磁場測量領域占據了一席之地。
在磁場測量領域,線性量的測量對磁傳感器性能具有比較高的要求。磁傳感器的測量范圍,響應頻率,靈敏度以及溫度適應性等一系列性能指標都對磁場的測量具有較大的影響。
相比其他磁傳感器,GMR傳感器具有較寬的磁場測量范圍,較高的響應頻率和靈敏度以及較強的溫度適應性,在磁場線性測量領域具有較為明顯的優勢。
物質在一定磁場下電阻改變的現象,稱為磁阻效應。磁性金屬和合金材料一般都有這種現象,巨磁阻傳感器就是基于這一原理而應用于生活中。
巨磁阻效應
所謂磁阻效應是 指導體或半導體在磁場作用下其電阻值發生變化的現象,巨磁阻效應在1988年由彼得?格林貝格(Peter Grünberg)和艾爾伯?費爾(Albert Fert)分別獨立發現,他們因此共同獲得2007年諾貝爾物理學獎。研究發現在磁性多層膜如Fe/Cr和Co/Cu中,鐵磁性層被納米級厚度的非磁性材 料分隔開來。在特定條件下,電阻率減小的幅度相當大,比通常磁性金屬與合金材料的磁電阻值約高10余倍,這一現象稱為“巨磁阻效應”。
巨磁阻效應可以用量子力學解釋,每一個電子都能夠自旋,電子的散射率取決于自旋方向和磁性材料的磁化方向。自旋方向和磁性材料磁化方向相同,則 電子散射率就低,穿過磁性層的電子就多,從而呈現低阻抗。反之當自旋方向和磁性材料磁化方向相反時,電子散射率高,因而穿過磁性層的電子較少,此時呈現高 阻抗。
如圖1所示,兩側藍色層代表磁性材料薄膜層,中間橘色層代表非磁性材料薄膜層。綠色箭頭代表磁性材料磁化方向,灰色箭頭代表電子自旋方向,黑色 箭頭代表電子散射。左圖表示兩層磁性材料磁化方向相同,當一束自旋方向與磁性材料磁化方向都相同的電子通過時,電子較容易通過兩層磁性材料,因而呈現低阻 抗。而右圖表示兩層磁性材料磁化方向相反,當一束自旋方向與第一層磁性材料磁化方向相同的電子通過時,電子較容易通過,但較難通過第二層磁化方向與電子自 旋方向相反的磁性材料,因而呈現高阻抗。
圖1 巨磁阻效應示意圖
巨磁阻電流傳感器原理圖解
物質的電阻率在磁場中會產生輕微變化。這種現象叫磁阻效應(AMR)。某些條件下物質電阻率會隨磁場產生較大變化稱作巨磁阻效應(GMR)。GMR可以比AMR大一個數量級的靈敏度。巨磁阻效應是一種量子力學和凝聚態物理學現象,是指磁性材料的電阻率在有外磁場作用時較之無外磁場作用時存在巨大變化的現象?;谶@個效應的傳感器就是巨磁阻傳感器。
巨磁阻電流傳感器原理圖