6. 數據寄存器究竟是哪些呢?
那么在STM32提供的庫里又是如何來用這些寄存器的呢?我們找一找,在stm 32f10x_bkp.c中,代碼如下:
/**
* @brief Writes user data to the specified Data Backup Register.
* @param BKP_DR: specifies the Data Backup Register.
* This parameter can be BKP_DRx where x:[1, 42]
* @param Data: data to write
* @retval None
*/
void BKP_WriteBackupRegister(uint16_t BKP_DR, uint16_t Data)
{
__IO uint32_t tmp = 0;
/* Check the parameters */
assert_param(IS_BKP_DR(BKP_DR));
tmp = (uint32_t)BKP_BASE;
tmp += BKP_DR;
*(__IO uint32_t *) tmp = Data;
}
即只需要提供兩個參數,第一個是BKP地址,第二個是數據,兩個都是16位的數據。第二個參數沒有問題,第一個參數如何提供呢?看例子中的代碼:
/**
* @brief Writes data Backup DRx registers.
* @param FirstBackupData: data to be written to Backup data registers.
* @retval None
*/
void WriteToBackupReg(uint16_t FirstBackupData)
{
uint32_t index = 0;
for (index = 0; index 《 BKP_DR_NUMBER; index++)
{
BKP_WriteBackupRegister(BKPDataReg[index], FirstBackupData + (index * 0x 5A));
}
}
從上面的代碼可以看到,第一個參數是用
BKPDataReg[index]
來提供的,這個又是什么東西呢?再找:
uint16_t BKPDataReg[BKP_DR_NUMBER] =
{
BKP_DR1, BKP_DR2, BKP_DR3, BKP_DR4, BKP_DR5, BKP_DR6, BKP_DR7, BKP_DR8,
BKP_DR9, BKP_DR10, BKP_DR11, BKP_DR12, BKP_DR13, BKP_DR14, BKP_DR15, BKP_DR16,
BKP_DR17, BKP_DR18, BKP_DR19, BKP_DR20, BKP_DR21, BKP_DR22, BKP_DR23, BKP_DR24,
BKP_DR25, BKP_DR26, BKP_DR27, BKP_DR28, BKP_DR29, BKP_DR30, BKP_DR31, BKP_DR32,
BKP_DR33, BKP_DR34, BKP_DR35, BKP_DR36, BKP_DR37, BKP_DR38, BKP_DR39, BKP_DR40,
BKP_DR41, BKP_DR42
};
原來最終還是用BKP_DR**這樣的格式來用的,其中的**代表的序號。即 5.4.1中的x。
7.復位后,對備份寄存器和RTC的訪問被禁止,并且備份域被保護以防止可能存在的意外的寫操作。執行以下操作可以使能對備份寄存器和RTC的訪問。
● 通過設置寄存器RCC_APB1ENR的PWREN和BKPEN位來打開電源和后備接口的時鐘
以下是相關代碼:
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR | RCC_APB1Periph_BKP, ENABLE);
這個沒有什么可說的,關于打開時鐘,前面已多次涉及到。
● 電源控制寄存器(PWR_CR)的DBP位來使能對后備寄存器和RTC的訪問。
以下是相關代碼:
PWR_BackupAccessCmd(ENABLE);
代碼本身相當簡潔,不過我們還是再深入一點點。
這個PWR_BackupAccessCmd代碼如下:(在stm 32f10x_pwr.c文件中)
/**
* @brief Enables or disables access to the RTC and backup registers.
* @param NewState: new state of the access to the RTC and backup registers.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void PWR_BackupAccessCmd(FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_FUNCTIONAL_STATE(NewState));
*(__IO uint32_t *) CR_DBP_BB = (uint32_t)NewState;
}
而CR_DBP_BB在這里(stm 32f10x_pwr.c文件中):
/* Alias word address of DBP bit */
#define CR_OFFSET (PWR_OFFSET + 0x00)
#define DBP_BitNumber 0x08
#define CR_DBP_BB (PERIPH_BB_BASE + (CR_OFFSET * 32) + (DBP_BitNumber * 4))
8.一番探索,暫告一段落。由于我的板子與EVAL板略有不同,4個發光管分別接GPIOD的8,9,10和11引腳,所以在程序中做了如下改動(stm3210e_eval.h文件中):
#define LEDn 4
#define LED1_GPIO_PORT GPIOD
#define LED1_GPIO_CLK RCC_APB2Periph_GPIOD
#define LED1_GPIO_PIN GPIO_Pin_8
#define LED2_GPIO_PORT GPIOD
#define LED2_GPIO_CLK RCC_APB2Periph_GPIOD
#define LED2_GPIO_PIN GPIO_Pin_9
#define LED3_GPIO_PORT GPIOD
#define LED3_GPIO_CLK RCC_APB2Periph_GPIOD
#define LED3_GPIO_PIN GPIO_Pin_10
#define LED4_GPIO_PORT GPIOD
#define LED4_GPIO_CLK RCC_APB2Periph_GPIOD
#define LED4_GPIO_PIN GPIO_Pin_11
然后在板子上將JP6插到VBAT端,并且為板子上現成的電池座中裝入一塊電池。
執行程序,結果是LED4亮(程序運行)LED1和LED3燈點亮,其含義如下:
(1. LD3 on / LD1 on: a Power On Reset occurred and the values in the BKP data registers are correct)。
按下復位按鈕后,LD1,LD2,LED3均滅,其含義如下:
(3. LD3 off / LD1 off / LD2 off: no Power On Reset occurred)
?
——下次將繼續討論學習STM32之RTC實踐,敬請關注。
?
評論
查看更多